Mathematics 2200H – Mathematical Reasoning

TRENT UNIVERSITY, Fall 2023

Assignment #3 Propositional Formulas Due on Friday, 29 September.*

This assignment is mostly about playing with formulas in propositional logic. Recall from

class that our "official" language of propositional logic, \mathcal{L}_P , has the following symbols:

- i. the atomic formulas A_0, A_1, A_2, \ldots ;
- ii. the connectives \neg and \rightarrow ; and
- iii. the grouping symbols (and).

The *formulas* of \mathcal{L}_P are then defined as follows:

- a. Every atomic formula is a formula.
- b. If α is a formula, then $(\neg \alpha)$ is a formula.
- c. If α and β are formulas, then $(\alpha \rightarrow \beta)$ is a formula.
- d. No other string of symbols of \mathcal{L}_P is a formula.

The logical axiom schema of the system are:

- A1. $(\alpha \to (\beta \to \alpha))$
- A2. $((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$
- A3. $(((\neg \beta) \rightarrow (\neg \alpha)) \rightarrow (((\neg \beta) \rightarrow \alpha) \rightarrow \beta))$

Every instance of one these schema, where we plug some particular formulas of \mathcal{L}_P in for α , β , and/or γ , is a *logical axiom*.

The system has a single rule of procedure, Modus Ponens:

MP. Given the formulas α and $(\alpha \rightarrow \beta)$, we may infer the formula β .

Given a set, possibly empty, of formulas Σ , the (non-logical) premisses or hypotheses, a deduction of a formula α from Σ , is a sequence of formulas $\varphi_1, \varphi_2, \ldots, \varphi_n$ such that each formula φ_k in the sequence

- 1. is a logical axiom,
- 2. is in Σ (*i.e.* it is a premiss or hypothesis), or
- 3. follows from some formulas φ_i and φ_j earlier in the sequence (so i, j < n),

and φ_n , the last formula in the sequence, is α . $\Sigma \vdash \alpha$, read as "Sigma proves alpha", means that there is a deduction of α from Σ .

- 1. What are the possible lengths (*i.e.* the number of symbols in the formula, counting repetitions) of formulas of \mathcal{L}_P ? [3]
- 2. Use truth tables to verify that each of the logical axioms is a *tautology*, *i.e.* a formula that is always true. [3]
- **3.** Suppose Σ is some set of hypotheses which are true and that $\Sigma \vdash \alpha$. Show that α must be true. (You'll need to do induction on the length of the deduction here.) [3]
- 4. What are the possible lengths (*i.e.* number of formulas) of deductions in this system? [1]

^{*} Please submit your solutions via Blackboard's Assignments module, preferably as a single pdf. If submission on Blackboard fails, please submit your solutions to the instructor on paper or via email to sbilaniuk@ trentu.ca as soon as you can.