Mathematics 2200H – Mathematical Reasoning TRENT UNIVERSITY, Fall 2023

Assignment #11 The Cantor Set

Due on Friday, 1 December.*

Consider the following process. Start with the unit interval $C_0 = [0.1]$ of real numbers. In step 1, delete the open middle third $(\frac{1}{3}, \frac{2}{3})$, leaving $C_1 = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$. In step 2, delete the open middle third of each remaining interval in C_1 , leaving $C_2 = [1, \frac{1}{9}] \cup [\frac{2}{9}, \frac{1}{3}] \cup [\frac{2}{3}, \frac{7}{9}] \cup [\frac{8}{9}, 1]$. In step 3, delete the open middle third of each remaining open interval in C_2 to make C_3 , and so on.

The Cantor set C is what you have left at the end of this process; technically, $C = \bigcap_{n=0}^{\infty} C_n = \{x \in [0.1] \mid x \in C_n \text{ for all } n \ge 0\}$. Note that this is not an empty set: the endpoints of every interval comprising C_n for each $n \ge 0$ survive through the reast of the process.

1. What is the total length of the intervals comprising C_n for each $n \ge 0$? [2]

The "total length" or *measure* of the Cantor set is not as simple a concept as a sum of lengths of some finite number intervals, not least because C has no subsets that are intervals of real numbers larger than a single point. However, it is still the limit of the total lengths of the sets C_n as $n \to \infty$.

- Use the ε-δ definition of the limit of a sequence to verify that the "total length" of the Cantor set C is 0. [2]
- **3.** Show that the interval [0, 1] of real numbers has the same cardinality as the Cantor set C. [3]
- 4. Show that the interval [0,1] of real numbers has the same cardinality as the set \mathbb{R} of all real numbers. [3]

^{*} Please submit your solutions via Blackboard's Assignments module, preferably as a single pdf. If submission on Blackboard fails, please submit your solutions to the instructor on paper or via email to sbilaniuk@ trentu.ca as soon as you can.