
Mathematics 2200H – Mathematical Reasoning
Trent University, Fall 2022

Solutions to Assignment #9 – (Non-)Completeness

Please give your complete reasoning in your solution. Recall that,
unless stated otherwise on a given assignment, you are permitted to work
together and look things up, so long as you write up your solution by yourself
and acknowledge all sources and help that you ended up using.

As in Assignment #8, suppose Q and the usual linear order on the
rationals (usually denoted by <, or by <Q when you have other linear
orders to keep track of) are defined as they were in class:
• Define the equivalence relation ≈ on pairs of integers by

(a, b) ≈ (c, d) if and only if ad = bc.
• If (a, b) is a pair of integers with b 6= 0, let

[(a, b)]≈ = { (c, d) ∈ Z× Z | (a, b) ≈ (c, d) }
Intuitively, this equivalence class represents the fraction a

b .
• Let Q =

{
[(a, b)]≈ | a, b ∈ Z and b 6= 0

}
.

• We can assume that the second coordinate in the pair defining an equiv-
alence class is positive (intuitively, we can assume that the denominator
of any fraction is positive). If we stick to such pairs as representatives
of equivalence classes, then [(a, b)]≈ <Q [(c, d)]≈ if and only if ad <Z bc.

To all this we add the following idea: a linear order is complete if every non-
empty subset that has an upper bound (which need not be in the subset)
has a least upper bound (which also need not be in the subset).

In answering the questions below, you may assume that all the familiar
properties of the integers, as well as the operations and linear order on the
integers, are true.

1. Using these definitions of Q and <, show that Q is not complete, i.e.
show that there is a non-empty subset A ⊂ Q with an upper bound in
Q, but no least upper bound in Q. [10]

Note. Some non-empty subsets of Q do have least upper bounds. For
example,

{
q ∈ Q | q < 5

3
}

has least upper bound 5
3 = [(5, 3)]≈.

Hint: Informally, think of the rationals as a part of the real number line.

Solution. Let A be the set of rationals between 0 and <
√

2. That is,
unwinding the definitions until we reach formality and then simplify the
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algebra:

A =
{
q ∈ Q | 0 < q <

√
2
}

=
{
q ∈ Q | 0 < q and q2 < 2

}
=
{

[(a, b)]≈ ∈ Q | [(0, 1)]≈ <Q [(a, b)]≈
and [(a, b)]≈ ·Q [(a, b)]≈ <Q [(2, 1)]≈

}
=
{

[(a, b)]≈ ∈ Q | [(0, 1)]≈ <Q [(a, b)]≈ and
[(
a2, b2)]

≈ <Q [(2, 1)]≈
}

=
{

[(a, b)]≈ ∈ Q | 0 <Z a and 0 <Z b and a2 ·Z 1 <Z b2 ·Z 2
}

Informally, A =
{

a
b | a and b are positive integers and a2 < 2b2 }.

We claim that A has an upper bound in Q, but has no least upper
bound in Q. For the sake of keeping it readable, we’ll show these facts
a little informally, rather than writing out things in terms of equivalence
classes and the like.

First, we claim that 2 = 2
1 is an upper bound for A, i.e. a

b < 2 for all
a
b ∈ A. Suppose, by way of contradiction, that 2 ≤ a

b for some a
b ∈ A. Note

that this means that we can also assume that a ≥ b ≥ 1. Then

2 ≤ a

b
=⇒ 2b ≤ a =⇒ 4b2 ≤ a2 (since a ≥ b ≥ 1)

=⇒ 4b2 ≤ a2 < 2b2 (since a
b ∈ A)

=⇒ 4b2 < 2b2 =⇒ 2 < 1 (after cancelling 2b2 on both sides),

which contradicts the fact that 1 < 2 in the integers. Thus 2 is an upper
bound for A.

Second, we claim that A has no least upper bound. (In the rationals,
anyway; as a set of real numbers, it has the least upper bound

√
2.) Since√

2 is irrational, i.e.
√

2 6= a
b for any rational a

b ∈ Q, we don’t have to worry
about the possibility that a least upper bound a

b for A has
(
a
b

)2 = a2

b2 = 2.
We do still have to show that no would-be least upper bound a

b for A has(
a
b

)2 = a2

b2 > 2 or
(
a
b

)2 = a2

b2 < 2.
Suppose first that a

b ∈ Q is an upper bound for A with 2 < a2

b2 . We
will show that a

b cannot be the least upper bound for A by showing that
there is an upper bound c

d ∈ Q for A with 2 < c2

d2 < a2

b2 . (Note that by the
definition of A, 2 < c2

d2 is enough to ensure that c
d is an upper bound for
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A.) We will find such a rational c
d by modifying a

b to make it just a little
bit smaller. Observe that if k > 1 then c

d = ka−1
kb = a− 1

k

b < a
b ; the trick

will be to find an integer k > 1 that also ensures that c2

d2 = (ka−1)2

(kb)2 > 2,
i.e. such that (ka− 1)2 > 2(kb)2. Now

(ka− 1)2 > 2(kb)2 ⇐⇒ (ka− 1)2 − 2(kb)2 > 0
⇐⇒ k2a2 − 2ka + 1− 2k2b2 > 0
⇐⇒

(
a2 − 2b2) k2 − 2ak + 1 > 0,

so the problem comes down whether we can find k > 1 such that the
polynomial (in k) expression

(
a2 − 2b2) k2 − 2ak + 1 is greater than zero.

Since 2 < a2

b2 , we know that a2 > 2b2, so the coefficient a2 − 2b2 of k2 in
this polynomial is positive. Since this is the top power of the polynomial, it
follows that the polynomial must be positive for large enough k. (Why? :-)
Thus, for some large enough integer k > 0, if we set c = ka− 1 and d = kb,
we get that 2 < c2

d2 < a2

b2 , so c
d is an upper bound for A that is smaller than

a
b , as required.

Suppose next that a
b ∈ Q is an upper bound for A with a2

b2 < 2, which
would mean, by the definition of A, that a

b is the largest element of A. We
can show that this impossible by finding c

d ∈ A, i.e. with c2

d2 < 2, such that
a
b < c

d . This can be done with methods very similar to those used in the
previous case and are left to the interested reader.

Putting all of this together, the set A has an upper bound, but no least
upper bound, in the rational numbers. (Whew!) �
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