
Mathematics 2200H – Mathematical Reasoning
Trent University, Fall 2022
Solutions to Assignment #8

What comes before!
Please your complete reasoning in your solution. Recall that, unless

stated otherwise on a given assignment, you are permitted to work together
and look things up, so long as you write up your solution by yourself and
acknowledge all sources and help that you ended up using.

Suppose Q and the usual linear order on the rationals (usually denoted
by <, or by <Q when you have other linear orders to keep track of) are
defined as they were in class:
• Define the equivalence relation ≈ on pairs of integers by

(a, b) ≈ (c, d) if and only if ad = bc.
• If (a, b) is a pair of integers with b 6= 0, let

[(a, b)]≈ = { (c, d) ∈ Z× Z | (a, b) ≈ (c, d) }
Intuitively, this equivalence class represents the fraction a

b .
• Let Q =

{
[(a, b)]≈ | a, b ∈ Z and b 6= 0

}
.

• We can assume that the second coordinate in the pair defining an equiv-
alence class is positive (intuitively, we can assume that the denominator
of any fraction is positive). If we stick to such pairs as representatives
of equivalence classes, then [(a, b)]≈ <Q [(c, d)]≈ if and only if ad <Z bc.
In answering the questions below, you may assume that all the familiar

properties of the integers, as well as the operations and linear order on the
integers, are true.

1. Using these definitions of Q and <Q, show that Q has no endpoints,
i.e. Q has no smallest and no largest element. [5]

Solution. To show that Q has no left endpoint it suffices to show that
for every q ∈ Q there is an r ∈ Q with r <Q q. Suppose that q = [(a, b)]≈,
where we may also suppose that 0 <Z b. Let r = q − 1 = q + (−1) =
[(a, b)]≈ + [(−1, 1)]≈ = [(a · 1 + b · (−1), b · 1)]≈ = [(a− b, b)]≈. (Note that
the a− b in the last step is taking place in Z.) Since 0 <Z b, we have

r = [(a− b, b)]≈ <Q [(a, b)]≈ = q

because
(a− b) · b = ab− b2 <Z ab = ba .
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Mutatis mutandis†, a very similar argument – which is left to the in-
terested reader! – shows that Q has no right endpoint either. �

2. Show that Q is countable, that is, that there is a 1–1 onto function
f : N→ Q. [5]

Note. Any such function will not play well with the respective arithmetic
operations or relations in each number system.

Solution. We gave saw a somewhat informal, but valid, proof in class
(2022-11-08). It would be perfectly acceptable to reproduce that argument
if one wrote out that lecture’s oral explanation of what is going on in the
process, or even just to reference the lecture in question. However, such
repetition is a little boring, so we’ll give another proof, albeit one a little
less direct. First, a few useful ways to check if a set A is countable that are
usually easier to use than defining a 1–1 onto function f : N→ A explicitly.

Lemma 1. Suppose A is an infinite set and g : A → N is a 1–1
function. Then A is countable.

Proof. Let T = {n ∈ N | n = g(a) for some a ∈ A } be the range
of T and let t0, t1, t2, . . . list T in order of size, i.e. tk denotes
the kth element of T . Note that since A is infinite and g is 1–1,
T must be infinite as well. Also, since g is 1–1, g has an inverse
on T : if tk ∈ T , then g−1 (tk) = a for the unique a ∈ A such that
g(a) = tk. Note that g−1 : T → A is both 1–1 (Why?) and onto
(Also why?).

Define the function f : N→ A by f(k) = g−1 (tk). Then f is
1–1 and onto since it is a composition of two 1–1 onto functions,
namely the enumeration of T , i.e. k 7→ tk, and g−1. Thus A is
countable by the definition of countable. �

Corollary. An infinite subset of a countable set is also count-
able.

Proof. Suppose B is an infinite subset of a countable set A.
Then the function β : B → A defined by β(b) = b for each b ∈ B
is 1–1, and we know, by the definition of countable, that there

† This translates roughly as “necessary changes having been made”.
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is a 1–1 onto function f : N → A. Then the function f−1 ◦ β :
B → N (recall that the composition is given by

(
f−1 ◦ β

)
(b) =

f−1 (β(b)) for all b ∈ B) is 1–1, since it is the composition of two
1–1 functions. It follows by Lemma 1 that B is countable. �

Lemma 2. Suppose A is an infinite set and h : N→ A is an onto
function. Then A is countable.

Proof. Define ϕ : A→ N by, for each a ∈ A, making ϕ(a) be the
least n ∈ N such that h(n) = a. It’s not hard to see that ϕ must
be 1–1. By Lemma 1, it follows that A is countable. �

Lemma 3. Suppose α : A→ B is 1–1 and onto. Then if one of A
or B is countable, so is the other.

Proof. First, suppose that A is countable, so there is a 1–1 onto
function f : N → A. In this case, the composition α ◦ f is a 1–1
onto function N→ B, so B is countable.

Second, suppose B is countable, so there is a 1–1 onto function
g : N → B. In this case, the composition α−1 ◦ g is a 1–1 onto
function N→ A, so A is countable. �

Using these lemmas we will show that Q is countable in stages:
Zeroth, we know from class that Z is countable by definition because

the function h : N → Z given by h(n) =
{ n

2 n is even
−n+1

2 n is odd
is 1–1 and

onto.
First, the function g : N × N → N defined by g(a, b) = 2a3b is 1–1, so

N× N is countable by Lemma 1.
Second, Z × Z is countable by Lemma 3 because N × N is countable

and the function H : N × N → Z × Z given by H(n,m) = (h(n), h(m)) is
1–1 and onto.

Third, Z×(Z \ {0}) = { (a, b) | a, b ∈ Z and b 6= 0 } is countable by the
Corollary to Lemma 1 because it is is an infinite subset of the countable set
Z× Z.

Fourth, by the definition of Q, the function e : Z×(Z \ {0})→ Q given
by e(a, b) = [(a, b)]≈ is onto. Since Z × (Z \ {0}) is countable, there is a
1–1 onto function f : N → Z × (Z \ {0}). Then e ◦ f is a function N → Q
which is onto because it is the composition of two onto functions. Since Q
is infinite, it follows by Lemma 2 that Q is countable, as desired. �
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