Mathematics 2200H – Mathematical Reasoning TRENT UNIVERSITY, Fall 2022 Assignment #3

Sherlock Holmes in (Heaven \lor Hell)?

- **1.** Suppose A and B are atomic formulas of propositional logic. For each of the following formulas,
 - **a.** $(A \wedge B)$ [2] and
 - **b.** $(A \leftrightarrow B) /2/,$

find a formula truth-table equivalent to it using only the symbols A, B, \neg , \rightarrow , (, and), and verify that your formula does the job. You may use each symbol as many times as you like in each formula.

SOLUTIONS. **a.** One formula using only the symbols A, B, \neg, \rightarrow , (, and) that is truth-table equivalent to $(A \wedge B)$, among other possibilities, is $(\neg (A \rightarrow (\neg B)))$. Here is a truth table verifying this:

A	B	$(\neg B)$	$(A \to (\neg B))$	$(\neg (A \to (\neg B)))$	$(A \wedge B)$
T	T	F	F	T	T
T	F	T	T	F	F
F	T	F	T	F	F
F	F	T	T	F	F

Observe that the last two columns are identical except for the formulas at the top \dots

b. Intuitively, $(A \leftrightarrow B)$ means $(A \to B) \land (B \to A)$), so the most straightforward approach is to leverage part **a** to write the second formula entirely in terms of the symbols A, B, \neg, \rightarrow , (, and). This gives us the pretty ugly formula $(\neg ((A \to B) \to (\neg (B \to A)))))$, but it does work:

A B	$(A \rightarrow B)$	$(B \rightarrow A)$	$(\neg (B \rightarrow A))$	$((A \to B) \to (\neg (B \to A))) (\neg (B \to A))) (A \to A) = (A \to A)$	$\neg((A \rightarrow B) \rightarrow (\neg(B \rightarrow A)))$) $(A \leftrightarrow B)$
T T	T	T	F	F	T	T
T F	F	T	F	T	F	F
F T	T	F	F	T	F	F
F F	T	T	F	F	T	T

Whew! Again, observe that the last two columns are identical except for the formulas at the top \ldots

- 2. Construct deductions in (our version of) propositional logic from the given hypotheses to the given conclusions in each of the following cases:
 - **a.** Hypotheses: $(\alpha \to \beta)$ and $(\beta \to \gamma)$; Conclusion: $(\alpha \to \beta) (\alpha \to \gamma)$. [3]
 - **b.** Hypotheses: none; Conclusion: $((\neg(\neg\varphi)) \rightarrow \varphi)$. [3]

NOTE. For your convenience for question 2, a summary of our official system of propositional logic is on page 24.

SOLUTIONS. **a.** Besides the hypotheses (or premisses) $(\alpha \rightarrow \beta)$ and $(\beta \rightarrow \gamma)$, we will only need axioms **A1** and **A2** in our deduction below.

1. $((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$ A22. $((\beta \to \gamma) \to (\alpha \to (\beta \to \gamma)))$ A13. $(\beta \to \gamma)$ Hypothesis4. $(\alpha \to (\beta \to \gamma))$ 2, 3 MP5. $((\alpha \to \beta) \to (\alpha \to \gamma))$ 1, 4 MP6. $(\alpha \to \beta)$ Hypothesis7. $(\alpha \to \gamma)$ 5, 6 MP

Thus $\{ (\alpha \to \beta), (\beta \to \gamma) \} \vdash (\alpha \to \beta)$, as desired. \Box

b. We will divide and conquer by using the deductions we have already done in class of $\vdash (\alpha \rightarrow \alpha \text{ (see page 4 below, let's call it Lemma I)}$ and in part **a**, plus the lemma below, as what amount to additional rules of procedure to reduce the length of the deduction we need to produce to verify that $\vdash ((\neg(\neg\varphi)) \rightarrow \varphi)$.

LEMMA **II**. For any formulas α , β , and γ , { $(\alpha \rightarrow (\beta \rightarrow \gamma)), \beta$ } $\vdash (\alpha \rightarrow \gamma).$

Proof. Here is the deduction:

1. $((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$ A22. $(\alpha \to (\beta \to \gamma))$ Hypothesis3. $((\alpha \to \beta) \to (\alpha \to \gamma))$ 1, 2 MP4. $(\beta \to (\alpha \to \beta))$ A15. β Hypothesis6. $(\alpha \to \beta)$ 4, 5 MP7. $(\alpha \to \gamma)$ 3, 6 MP

Thus $\{ (\alpha \to (\beta \to \gamma)), \beta \} \vdash (\alpha \to \gamma)$, as desired. \Box

We will use part **a** and Lemmas **I** and **II** to keep the deduction to verify that $\vdash ((\neg(\neg\varphi)) \rightarrow \varphi)$, for any formula φ , tolerably short and comprehensible:

1.
$$(((\neg\varphi) \to (\neg(\neg\varphi))) \to (((\neg\varphi) \to (\neg\varphi)) \to \varphi))$$

2. $((\neg(\neg\varphi)) \to ((\neg\varphi) \to (\neg(\neg\varphi))))$
A3

2.
$$((\neg(\neg\varphi)) \rightarrow ((\neg\varphi) \rightarrow (\neg(\neg\varphi))))$$

1, 2 Part **a** Lemma **I** 3. $((\neg(\neg\varphi)) \rightarrow (((\neg\varphi) \rightarrow (\neg\varphi)) \rightarrow \varphi))$

4.
$$((\neg \varphi) \rightarrow (\neg \varphi))$$
 Lemma

3, 4 Lemma II 5. $((\neg(\neg\varphi)) \rightarrow \varphi)$

Since Lemma I tells us that for any formula α there is a deduction of $(\alpha \rightarrow \alpha)$ using just the logical axioms and Modus Ponens, *i.e.* that $\vdash (\alpha \rightarrow \alpha)$, we can appeal to it to justify line 4 in the deduction above. Technically, this is a form of shorthand; if we were truly formal we would insert the deduction in Lemma I, with α replaced by $(\neg \varphi)$ throughout, in place of line 4, renumbering the lines of the overall deduction accordingly.

Similarly, if were that formal, we would replace the current line 3 with the deduction from part **a**, with α , β , and γ replaced by $(\neg(\neg\varphi))$, $(((\neg \varphi) \rightarrow (\neg \varphi)) \rightarrow \varphi)$, and $(((\neg \varphi) \rightarrow (\neg \varphi)) \rightarrow \varphi)$, respectively, and renumber the overall deduction accordingly. Note that lines 1 and 2 of the current deduction then correspond to the hypotheses required in part **a**.

Again, if were that formal, we would replace the current line 5 with the deduction in Lemma II, with the formulas α , β , and γ replaced by $(\neg(\neg\varphi))$, $((\neg \varphi) \rightarrow (\neg \varphi))$, and φ , respectively. Note that lines 3 and 4 of the current deduction then correspond to the hypotheses required in the deduction of Lemma II.

Our official system of propositional logic, as we developed it in class:

- The symbols of the language are:
 - 1. The atomic formulas: A_1, A_2, A_3, \ldots
 - 2. The connectives: \neg and \rightarrow .[†]
 - 3. The grouping symbols: (and).
- The formulas of the language are defined as follows:
 - 1. Every atomic formula is a formula.
 - 2. If α is a formula, so is $(\neg \alpha)$.
 - 3. If α and β are formulas, so is $(\alpha \rightarrow \beta)$.
 - 4. Nothing else is a formula.
- The logical axioms are defined as follows. Suppose α , β , and γ are any formulas of the language. Then the following are logical axioms:
 - A1. $(\alpha \rightarrow (\beta \rightarrow \alpha))$
 - **A2.** $((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$
 - A3. $(((\neg \beta) \rightarrow (\neg \alpha)) \rightarrow (((\neg \beta) \rightarrow \alpha) \rightarrow \beta))$
- The sole rule of prodecure is Modus Ponens (MP): Given formulas of the language α and $(\alpha \rightarrow \beta)$, we may infer β .
- If Γ is a set, possibly empty, of formulas of the language and α is a formula of the language, then a deduction or proof of α from the set of hypotheses Γ , written as $\Gamma \vdash \alpha$ (or as $\vdash \alpha$ if $\Gamma = \emptyset$), is a finite sequence of formulas of the language, say $\varphi_1, \varphi_2, \ldots, \varphi_n$, with φ_n being α , such that each φ_k is
 - 1. a hypothesis, *i.e.* $\varphi_k \in \Gamma$, or
 - 2. a logical axiom, or
 - 3. follows from preceding formulas in the sequence by Modus Ponens, *i.e.* there are i, j < k such that φ_j is $(\varphi_i \to \varphi_k)$.

The example of a formal deduction that we did in class [the Lemma I referred to in the solution to **2a** above, was of $\vdash (\alpha \rightarrow \alpha)$, where α could be any formula of the language :

1.
$$((\alpha \to ((\alpha \to \alpha) \to \alpha)) \to ((\alpha \to (\alpha \to \alpha)) \to (\alpha \to \alpha)))$$
 A2
2. $(\alpha \to ((\alpha \to \alpha) \to \alpha))$ A1

3.
$$((\alpha \to (\alpha \to \alpha)) \to (\alpha \to \alpha))$$
 1, 2 MP

4.
$$(\alpha \to (\alpha \to \alpha))$$
 A1

5.
$$(\alpha \to \alpha)$$
 3, 4 MP

[†] The often-used connectives \lor , \land , and \leftrightarrow are abbreviations for constructions using only the official connectives, as in question **1**.