
Mathematics 2200H – Mathematical Reasoning
Trent University, Fall 2021

Solutions to Assignment #3
A Little Number Theory
Due on Friday, 1 October.

For this assignment you may assume that basic arithmetic on the integers works in
the ways we are familiar with. (We will be showing that it does after we officially define
the natural numbers and the integers in class.) You may also assume the following fact:

(↓) (Descending Chain Condition) Every strictly decreasing sequence of positive
integers is finite.

That is, if you have a sequence of positive integers a0 > a1 > a2 > · · · , then it cannot
be infinite. (In fact, it can have at most |a0| elements. Why?) This fact is surprisingly
powerful; it turns out to be equivalent to being able to do induction, which we will see
entirely too much of in the course of building up the various common number systems.

1. Suppose that a and b are positive integers with a < b. Use (↓) to show that there
exist unique integers c ≥ 1 and 0 ≤ r < a such that b = ca + r. [3]

Solution. Since a is positive, i.e. a > 0, we have that b > b− a > b− 2a > b− 3a > · · · ,
and because a < b, it follows that this strictly decreasing sequence has at least two positive
elements, namely b and b− a. By the Descending Chain Condition, there are only finitely
many positive integers in this strictly decreasing sequence. This means that there is some
n ≥ 1 such that if we subtract a one more time from b−na, the result will not be positive,
i.e. b− (n + 1)a ≤ 0.

Suppose, then, that b− na is the last (and smallest) positive integer in the sequence.
There are two cases: either b − na < a, i.e. b − (n + 1)a < 0, or b − na = a, i.e.
b− (n+ 1)a = 0. In the first case, let c = n and r = b− na, so b = na+ (b− na) = ca+ r,
where c = n ≥ 1 and 0 < b − na = r < a; in the second case, let c = n + 1 and r = 0, so
b = (n + 1)a + 0 = ca + r, where n + 1 ≥ 2 and 0 = r < a. Either way, we have a c ≥ 1
and r with 0 ≤ r < a such that b = ca + r.

It remains to show that c and r are unique. Suppose, for the sake of argument that
we also have b = ka + s for some integers k and s with k ≥ 1 and 1 ≤ s < a. We need to
show that c = k and r = s.

First, suppose r ≥ s. Then 0 ≤ r − s = (b − ca) − (b − ka) = (c − k)a, so r − s is a
multiple of a, while 0 ≤ r − s < r < a, so 0 ≤ r − s < a as well. The only non-negative
multiple of a that is less than a is 0, so r − s = 0, i.e. r = s. A similar argument, with
the roles of r and s reversed show that r = s in the case that r ≤ s.

Second, since we have established that r = s, it follows that b− ca = r = s = b− ka,
from which we can deduce that ca = ka. It follows that (c − k)a = ca − ka = 0. Since
a > 0, this is only possible if c− k = 0, i.e. c = k.

Thus c and r must be unique. �

Recall that an integer a divides an integer b, often written as a|b, if b = ca for some
integer c, i.e. r = 0 above. [In the case where a and b are positive, anyway.] The greatest
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common divisor of two integers a and b, often written as gcd(a, b) or just (a, b), is the
largest positive integer d such that d|a and d|b.

2. Use 1 and (↓) to show that any two positive integers do have a greatest common
divisor. [5]

Hint: If you have trouble getting started, look up the Euclidean algorithm.

Solution. Suppose a and b are positive integers. There are three cases:

Case 1. If a = b, then a (or you could call it b :-) is the greatest common divisor of a and
b, since a = 1 · b.
Case 2. If a < b, consider the following process∗ to discover the greatest common divisor
d of a and b:

Start. Let a0 = a and b0 = b. Note that a0 = a < b = b0.

Step n. Given positive integers an < bn for some n ≥ 0, the result of 1 tells us that there
are unique integers cn ≥ 0 and rn with 0 ≤ rn < an such that bn = cnan + rn.

• If rn = 0, then we stop the process with d = an.

• If rn > 0, let bn+1 = an and an+1 = rn and proceed to Step n + 1. (Note that
in this case 0 < an+1 = rn < an = bn+1, as required to do Step n + 1.)

Since a = a0 > a1 > a2 > · · · is a descending sequence of positive integers, it must be
finite by the Descending Chain Condition, so the process must terminate at Step n for
some n ≥ 0, giving us d = an as the candidate for the greatest common divisor.

We need to show that the d produced in this way is indeed the greatest common
divisor. First, we show that d divides both a = a0 and b = b0. d = an so d|an and
bn = cnan + 0 = cnd, so d|bn. Since d divides both rn−1 = an and an−1 = bn, and bn−1 =
cn−1an−1 + rn−1 it follows that d|bn−1 as well. Then, since d divides both rn−2 = an−1

and an−2 = bn−1, and bn−2 = cn−2an−2 + rn−2 it follows that d|bn−2 as well, and so on.
Backtracking like this all the way back to a = a0 and b = b0 tells us that d divides both a
and b, so it is a common divisor.

Second, we show that d is the greatest possible common divisor of a and b, which
boils down to showing that if an integer e is a common divisor of a and b, then it is also a
divisor of d. Since e divides both a0 = a and b0 = b, it also divides r0 = b0 − c0a0. Then,
since e divides both b1 = a0 and a1 = r0, it also divides r1 = b1 − c1a1; since e divides
both b2 = a1 and a2 = r1, it also divides r2 = b2 − c2a2; and so on. Tracking divisibility
by e in this manner all the way through the process to an = d tells us that e divides d.

Thus the integer d given by the process is the greatest common divisor of a and b.

Case 3. If a > b, a similar argument to the one in Case 2, with the roles of a and b reversed,
shows that a and b have a greatest common divisor.

Since the three cases cover all the possibilities left open by the hypothesis that a and
b are positive integers, they have a greatest common divisor. �

∗ This process is called the Euclidean Algorithm nowadays. It appears in Euclid’s Elements, which

was written about 300 b.c.
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3. Suppose that a and b are positive integers and d = (a, b) is their greatest common
divisor. Show that there exist integers x and y (which need not be positive) such that
ax + by = d. [3]

Hint: Trace the argument you did for 2 backwards.

Solution. Suppose a and b are positive integers and d = (a, b) is their greatest common
divisor. Consider the same three cases considered in the solution to 2 above:

Case 1. In this case a = b and the greatest common divisor is d = a = b. Let x = 1 and
y = 0, so ax + by = a · 1 + b · 0 = a = d, so there exist integers x and y as required.

Case 2. In this case a < b. By the uniqueness of the greatest common divisor of a and
b, established in the solution to 2 above, running the process described in that solution
for Case 2 will produce d. In fact, d = an for some n ≥ 1 where bn = cnan, but this
means that d = an = rn−1, where bn−1 = cn−1an−1 + rn−1 = cn−1an−1 + d, so d =
bn−1 − cn−1an−1. If n − 1 = 0, this would mean that d = b0 − c0a0 = b − c0a, so we
could take x = −c0 and y = 1 to get ax + by = d. On the other hand, if n − 1 > 0, we
can use the facts that an−1 = rn−2, bn−1 = an−2, and bn−2 = cn−2an−2 + rn−2 to write
an−1 = rn−2 = bn−2 − cn−2an−2, and then plug this into d = bn−1 − cn−1an−1 to get
d = an−2−cn−1 (bn−2 − cn−2an−2) = −cn−1bn−2 +(1 + cn−1cn−2an−2) an−2. If n−2 = 0,
then this boils down to having x = 1 + c1c0 and y = c1; if not one can proceed in a similar
way, backtracking through the Euclidean algorithm, to eventually obtain the neccessary x
and y.

Case 3. If a > b, a similar argument to the one in Case 2 above, with the roles of a and b
reversed, shows that there exist integers x and y such that ax + by = d.

Since the three cases cover all the possibilities left open by the hypothesis that a and
b are positive integers, they have a greatest common divisor. �
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