Mathematics 2200H – Mathematical Reasoning

TRENT UNIVERSITY, Fall 2021

Assignment #8 Zombie Math?

Due on Friday, 12 November. May be submitted on paper or via Blackboard.*

Recall from class that we defined the integers by first defining an equivalence relation \sim on $\mathbb{N} \times \mathbb{N} = \{(a, b) \mid a, b \in \mathbb{N}\}$ by $(a, b) \sim (c, d) \iff a + d = b + c$, and then let the integers be the equivalence classes of this relation, *i.e.* $\mathbb{Z} = \{[(a, b)]_{\sim} \mid a, b \in \mathbb{N}\}$. We then proceeded to define taking negatives, addition, multiplication, and the linear order on \mathbb{Z} by:

$$- [(a,b)]_{\sim} = [(b,a)]_{\sim}$$

$$[(a,b)]_{\sim} + [(c,d)]_{\sim} = [(a+c,b+d)]_{\sim}$$

$$[(a,b)]_{\sim} \cdot [(c,d)]_{\sim} = [(ac+bd,ad+bc)]_{\sim}$$

$$[(a,b)]_{\sim} < [(c,d)]_{\sim} \iff a+d < b+c$$

We also defined the unit elements for addition and multiplication by $0 = [(0,0)]_{\sim}$ and $1 = [(1,0)]_{\sim}$.

In answering the following questions, you may assume that all the basic properties of the arithmetic operations and the linear order on \mathbb{N} have been established.

- **1.** Suppose $p, q \in \mathbb{Z}$. Show that:
 - **a.** (-p) + (-q) = -(p+q) [1] **b.** $(-p) \cdot q = p \cdot (-q) = -(p \cdot q)$ [1.5] **c.** $(-p) \cdot (-q) = p \cdot q$ [1.5] **d.** $(-p) < (-q) \iff q < p$ [1]
- **2.** Suppose $p, q, r, s \in \mathbb{Z}$. Show that:
 - **a.** $p = q \iff p + r = q + r$ [1.5] **b.** $p < q \iff p + r < q + r$ [2] **c.** p < q and $r < s \implies p + r < q + s$ [1.5]

^{*} All else failing, please email your solutions to the instructor at: sbilaniuk@trentu.ca