Mathematics 2200H – Mathematical Reasoning

TRENT UNIVERSITY, Fall 2021

Assignment #11 The least uncountable ordinal Due on Friday, 3 December. May be submitted on paper or via Blackboard.*

Recall from class that an *ordinal* or *ordinal number* is a set α such that:

- *i.* α is well-ordered by \in , *i.e.* \in linear orders α and every non-empty subset A of α has an \in -least element.
- *ii.* α is downward-closed under \in , *i.e.* whenever $b \in a$ and $a \in \alpha$, $b \in \alpha$ too.

Recall also that a set A is *finite* if there is a function $f : n \to A$ which is 1–1 and onto for some $n \in \mathbb{N}$, and is *countable* or *countably infinite* if there is a function $f : \mathbb{N} \to A$ which is 1–1 and onto. Note that one way to describe the set of natural numbers \mathbb{N} is that it is the set of finite ordinals.

Let $\omega_1 = \{ \alpha \mid \alpha \text{ is an ordinal which is finite or countable} \}$. Note that, notwithstanding the notation, this definition does not guarantee ω_1 is a set; after all, the collection of all ordinals, $ON = \{ \alpha \mid \alpha \text{ is an ordinal} \}$, which has a similar definition, was shown in class not to be a set.

Do one (1) of the following problems.

- **1.** Show that ω_1 is indeed a set. [10]
- 2. Assuming that ω_1 is indeed a set, show that ω_1 is an ordinal, but that it is not finite or countable. [10]

^{*} All else failing, please email your solutions to the instructor at: sbilaniuk@trentu.ca