
Mathematics 2200H – Mathematical Reasoning
Trent University, Fall 2020

Solutions to Assignment #Q∩(−∞,9)
Cut to the Quick!

Due on Friday, 20 November.

Recall from various lectures that a schnitt or Dedekind cut is a subset S of Q such
that:

1. S 6= ∅ and S 6= Q.
2. S is “closed downwards”: if q ∈ S and p ∈ Q with p < q, then p ∈ S.
3. S has no largest element: if q ∈ S, then there is an r ∈ S with q < r.

Intuitively, a schnitt S is (−∞, s)∩Q for some real number s. Formally, the real number in
question is the schnitt S. The set of real numbers is then R = {S ⊂ Q | S is a schnitt }. It
is pretty easy to define particular real numbers as schnitts, e.g. 0R = { q ∈ Q | q < 0 } and
1R = { q ∈ Q | q < 1 }, the operation of addition by S + T = { a + b | a ∈ S and b ∈ T },
and the linear order on the reals by S ≤ T ⇐⇒ S ⊆ T .

1. Show that if S is a schnitt, then S +R (−S) = 0R. [Left unfinished in lecture . . . ] [4]

Solution. Recall from lecture that if S is a schnitt, then

−S = {−t | t /∈ S ∧ t 6= min (Q \ S) } ,

where min (Q \ S) is the least element of Q \ S, assuming there is one. (Note that if a
schnitt S represents a rational q, then S = {a ∈ Q | a < q} and q = min (Q \ S), and
otherwise Q \ S does not have a least element.) We will show that S +R (−S) = 0R by
showing that S +R (−S) ⊆ 0R and 0R ⊆ S +R (−S).

First, suppose x ∈ S +R (−S). By the definition of +R, this means that there are
a ∈ S and b ∈ −S such that x = a+ b. Since b ∈ −S, b = −u for some u ∈ Q\S. As every
element of Q \ S is greater than every element of S (since S is downward closed under
<), it follows that a < u, and hence that x = a + b = a + (−u) < 0, so x ∈ 0R. Thus
S +R (−S) ⊆ 0R.

Second, suppose y ∈ 0R, so y < 0. Choose a u ∈ Q \ S (other than the minimum
element of Q \ S, if there is one) such that u + y ∈ S. Then −u ∈ −S by the definition
of −S, so y = y + 0 = y + u + (−u) = (u + y) + (−u) ∈ S +R (−S). Thus we also have
0R ⊆ S +R (−S), and so it follows that S +R (−S) = 0R.

The one thing that still needs some justification in the paragraph above is the ability
to choose a u ∈ Q\S (other than min (Q \ S)) such that u+y ∈ S. Intuitively, this borders
on being obvious: S is a schnitt, so it consists of all the rationals up to some point and
no rationals beyond that point, so we can find rationals below and above where S ends
that are arbitrarily close to each other. All we then need to do is to find two rationals
w ∈ S and u ∈ Q \ S such that the distance w − u between w and u is less that |y|. Then
u + y < u− (u− w) = w ∈ S, so u + y ∈ S by the downward closure property of schnitts.

We will verify the intuition that we can find rationals w ∈ S and u ∈ Q\S (other than
min (Q \ S)) such that the distance w − u between w and u is arbitrarily small. Suppose
we are given an ε > 0, withe ε ∈ Q. We will define sequences {wn} from S and {un} from
Q \ S inductively as follows:



• Choose a w0 ∈ S and a u0 ∈ Q \ S arbitrarily. Note that since everything in S is less
than everything in Q \ S, we have w0 < u0.

• Given that wn ∈ S and un ∈ Q \ S have been defined, consider vn = 1
2 (wn + un). If

vn ∈ S, let wn+1 = vn and let un+1 = un, but if vn ∈ Q \ S, let wn+1 = wn and let
un+1 = vn.

Note that we are allowing the possibility that wn turns out to be the least element of Q\S,
assuming there is one. If this should happen, then wk = wn for all k ≥ n. (Why?)

It is clear that this process will have un+1 − wn+1 = (un − wn) /2 for all n ≥ 0, from
which it is easy to deduce that un − wn = (u0 − w0) /2n for all n ≥ 0. For some n that is
large enough, we will have un − wn = (u0 − w0) /2n < ε/2. If un 6= min (Q \ S), we can
take u = un and w = wn, giving us a w ∈ S and u ∈ Q \ S that are less than ε/2 < ε
apart. If we are unlucky enough to have un = min (Q \ S), we can take u = un + ε

2 and
w = wn, giving us giving us a w ∈ S and u ∈ Q \ S that are less than ε

2 + ε
2 = ε apart.

Either way, we have what we need.
This completes the proof. Whew! �

2. Define ·R, i.e. multiplication on the real numbers as defined via schnitts. [You need
not develop the properties of multiplication, just define it fully.] [6]

Hint: First, define multiplication between two positive real numbers. Second, use what
you did (and a bit of how you want multiplication to behave) to extend the
definition to the cases where one or both of the numbers being multiplied is not
positive.

Solution. Following the hint, suppose S and T are schnitts, with 0R < S and 0R < T .
Note that this means that there are p ∈ S with 0 < p and q ∈ T with 0 < q. In this case,
let

S ·R T = { q ∈ Q | q ≤ 0 } ∪ { pq | p ∈ S ∧ q ∈ T ∧ 0 < p ∧ 0 < q } .

It’s not hard to check that this is a schnitt, but that wasn’t asked for . . . :-)
Having defined ·R for positive reals, we can extend the definition to all other reals as

follows:

If 0R < S and T < 0R, let S ·R T = − (S ·R (−T )).
If S < 0R and 0R < T , let S ·R T = − ((−S) ·R T ).
If S < 0R and T < 0R, let S ·R T = (−S) ·R (−T ).
If S = 0R or T = 0R, let S ·R T = 0R.

Note that S < 0R if and only if 0R < −S, and that 0R < S if and only if −S < 0R, so the
first three parts above use the definition of ·R for positives.

That’s that! Mind you, proving that multiplication so defined has the properties you
expect of it, is, at best, rather tedious . . . �


