
Mathematics 2200H – Mathematical Reasoning
Trent University, Fall 2020

Solutions to Assignment #2+2
An almost universe of set theory

Due on Friday, 9 October.

Let’s define sets Vn for all n ≥ 0 as follows:

V0 = ∅
If Vn has been defined for some n ≥ 0, let Vn+1 = P (Vn) = {X | X ⊆ Vn }.

Thus

V0 = ∅
V1 = P (V0) = P(∅) = {∅}
V2 = P (V1) = P ({∅}) = {∅, {∅}}
V3 = P (V2) = P ({∅, {∅}}) = {∅, {∅}, {{∅}} , {∅, {∅}}}

and so on. For anyone who noticed that V0 = ∅ = 0, V1 = S(0) = 1, and V2 = S(1) = 2,
please note that this pattern stops at n = 3: 3 = S(2) = {∅, {∅}, {∅, {∅}}} ( P (V2) = V3.
It is, however, true that for all n ≥ 0, we have that 0, 1, 2, . . . , n are all elements of Vn+1,
so it turns out that n ⊆ Vn for all n ≥ 0.

1. Give an inductive argument showing that Vn ⊆ Vn+1 for all n ≥ 0. [4]

Solution. We will use induction on n to show that Vn ⊆ Vn+1 for all n ≥ 0.

Base Step: (n = 0) By definition, V0 = ∅. Since the empty set is a subset of every set, it
follows that V0 ⊆ V1.

Inductive Hypothesis: For some n ≥ 0, Vn ⊆ Vn+1.

Inductive Step: We need to show, assuming the Inductive Hypothesis, that Vn+1 ⊆ Vn+2.
Suppose x ∈ Vn+1. Since Vn+1 = P (Vn) = {x | x ⊂ Vn } by definition, this means

that x ⊆ Vn. By the Inductive Hypothesis, Vn ⊆ Vn+1, so x ⊆ Vn+1 too. It now follows
that x ∈ P (Vn+1) = Vn+2. Hence every x in Vn+1 is also in Vn+2, i.e. Vn+1 ⊆ Vn+2.

Thus Vn ⊆ Vn+1 for all n ≥ 0 by induction. �

Note: It follows from 1 that if n ≤ k, then Vn ⊆ Vk. A modification of the argument
given above could be used to show this fact directly. Note also that it follows from the
argument at the inductive step that if x ∈ Vn, then x ⊆ Vn. (This is vacuously true for
n = 0.)

What happens when we put all of the Vns together? To put it another way, what is
the “limit” of the increasing sequence of sets V0 ⊆ V1 ⊆ V2 ⊆ V3 ⊆ · · · ? It’s the following
object:

Vω =

∞⋃
n=0

Vn = {x | x ∈ Vn for some n ≥ 0 }

Vω is an infinite set since N = {0, 1, 2, 3, . . . } ⊆ Vω. (Why?) In fact, it is large and complex
enough that most of the axioms of set theory would be true if the universe of sets were Vω.
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2. Which of the axioms of set theory, as developed in the set theory lectures I-IV, would
be true if the universe of sets was Vω? Explain why or why not for each. [6]

Solution. We’ll run through the axioms of set theory we have so far and see if they would
be true if Vω was the collection of all the sets there were.

0◦ Empty Set Axiom. This axiom asserts that there exists a set which has no elements.
For this to be true in Vω, there must be a set in Vω which has no elements that are also in
Vω. The actual empty set is an element of V1 = {∅}, and hence of Vω (by its definition),
and ∅ has no elements that are in Vω (or anywhere else :-).

Thus the Empty Set Axiom holds in Vω.

1◦ Pair Set Axiom. This axiom asserts that if x and y are sets, then {x, y} is also a set. For
this to be true in Vω, we we need to have that for all x, y ∈ Vω, we also have {x, y} ∈ Vω.

Suppose x, y ∈ Vω. By the definition of Vω, there exist n, m ∈ N such that x ∈ Vn and
y ∈ Vm. Let k = max(n.m). It follows from 1 that Vn ⊆ Vk and Vm ⊆ Vk, so x, y ∈ Vk. It
follows that {x, y} ⊆ Vk, and so {x, y} ∈ P (Vk) = Vk+1. By the definition of Vω, it follows
that {x, y} ∈ Vω.

Thus the Pair Set Axiom holds in Vω.

2◦ Union Axiom. This axiom asserts that if x is a set, then the collection of all elements
of elements of x,

⋃
x =

⋃
y∈x

y = { z | ∃y ∈ x ((z ∈ y) ∧ (y ∈ x)) }, is also a set. For this to

be true in Vω, we need to have that for all x ∈ Vω, we also have
⋃

x ∈ Vω.
Suppose x ∈ Vω. Then x ∈ Vn for some n ≥ 1 by the definition of Vω. (V0 = ∅, so

x /∈ V0 . . . ) If n = 1, then x ∈ V1 = {∅}, so x = ∅. In this case
⋃
x =

⋃
∅ = ∅ ∈ Vω. If

n ≥ 2, then x ∈ Vn = P (Vn−1), so x ⊆ Vn−1. That is, y ∈ Vn−1 = P (Vn−2) for every y ∈ x,
i.e. y ⊆ Vn−2 for every y ∈ x. It follows that

⋃
x ⊆ Vn−2, so

⋃
x ∈ P (Vn−2) = Vn−1.

Therefore, by the definition of Vω,
⋃

x ∈ Vω in this case too.
Thus the Union Axiom holds in Vω.

3◦ Power Set Axiom. This axiom asserts that if x is a set, then P(x) = { y | y ⊆ x } is
also a set. For this to be true in Vω we need to have that for all x ∈ Vω, we also have
P(x) ∈ Vω.

Suppose x ∈ Vω. Then x ∈ Vn for some n ≥ 1. (Again, V0 = ∅, so x /∈ V0.)
Since Vn = P (Vn−1), it follows that x ⊆ Vn−1. This, in turn, means that if y ⊆ x,
then y ⊆ Vn−1, and so y ∈ P (Vn−1) = Vn. As y ∈ Vn for every y ⊆ x, it follows that
P(x) = { y | y ⊆ x } ⊆ Vn, and hence that P(x) ∈ P (Vn) = Vn+1. Therefore, by the
definition of Vω, we have P(x) ∈ Vω.

Thus the Power Set Axiom holds in Vω.

4◦ Extension Axiom. This axiom asserts that two sets are equal if they have the same
elements. For this to be true in Vω we need to have that for all x, y ∈ Vω, x = y if for all
z ∈ Vω, z ∈ x if and only if z ∈ y.

As was noted after the main proof for 1 above, part of that proof showed that if
x ∈ Vn for some n ∈ N, then x ⊆ Vn. Since any x ∈ Vω is there because x ∈ Vn for some
n and since Vn ⊆ Vω, it follows that x ⊆ Vω for any x ∈ Vω. Thus if x, y ∈ Vomega, we
have that z ∈ x if and only if z ∈ y for all z ∈ Vω actually boils down to z ∈ x if and only
if z ∈ y for all z (since x ⊆ Vω and y ⊆ Vω), so x = y.

Thus the Extension Axiom holds in Vω.
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5◦ Foundation Axiom. This axiom asserts that every non-empty set has an element with
which the set has no elements in common, i.e. for every x 6= ∅ there is a y ∈ x such that
y ∩ x = ∅. This is, in particular, true of all sets x ∈ Vω. As noted above, x ⊆ Vω when
x ∈ Vω, so a y in x with y ∩ x = ∅ is also in Vω.

Thus the Foundation Axiom holds in Vω.

6◦ Comprehension Axiom. This axiom asserts that a definable subset of a set is also a set,
i.e. if x is a set and ϕ(z) is formula that is true or false depending on what set z is plugged
into it, then { z ∈ x | ϕ(z) is true } is also a set. For this to be true in Vω such definable
subsets of sets in Vω would also have to be in Vω.

Suppose x ∈ Vω and y = { z ∈ x | ϕ(z) is true } is a definable subset of x. Then
x ∈ Vn for some n and so, as previously noted, x ⊆ Vn too. Since y ⊆ x, y ⊆ Vω as well,
so y ∈ P (Vn) = Vn+1. By the definition of Vω, it follows that y ∈ Vω.

Thus the Comprehension Axiom holds in Vω.

To help deal with the Replacement and Infinity Axioms, we will first prove a small lemma:

Lemma. Vn is finite for every n ∈ N.

Proof. We will proceed by induction on n.
Base Step. (n = 0) V0 = ∅ has 0 elements, so it is finite.
Inductive Hypothesis. Vn is finite for some n ≥ 0.
Inductive Step. We need to show that Vn+1 is finite. By the Inductive Hypothesis,
Vn is finite, say with k elements. Then Vn+1 = P (Vn) has 2k elements, because
each subset of Vn is determined by making a choice for every one of the k elements
of Vn of whether to include it in the subset or not. Thus Vn+1 is also finite. //

7◦ Replacement Axiom. This axiom asserts that if we can define a function with a given
domain, then the range of the function is also a set. More precisely, if A is a set and ϕ(x, y)
is a formula such that for every x ∈ A there is exactly one set y making ϕ(x, y) true, then
B = f ′′A = { y | ∃x ∈ A : ϕ(x, y) is true } is also a set. For this to be true in Vω we need
to have that if A ∈ Vω and ϕ(x, y) is a formula such that for every x ∈ A there is exactly
one set y ∈ Vω making ϕ(x, y) true, then B = { y | ∃x ∈ A : ϕ(x, y) is true } ∈ Vω.

Suppose that A ∈ Vω and ϕ(x, y) is a formula such that for every x ∈ A there is exactly
one set y ∈ Vω making ϕ(x, y) true. Note that each such y ∈ Vω must be an element of Vn

for some n by the definition of Vω. Let m = max {n ∈ N | ∃x ∈ A∃y (ϕ(x, y) ∧ (y ∈ Vn)) }.
This maximum is well defined because A ∈ Vk for some k, so A ⊆ Vk, and Vk is finite
by the Lemma, so A is finite. Then B = { y | ∃x ∈ A : ϕ(x, y) is true } ⊆ Vm, so B ∈
P (Vm) = Vm+1. It follows by the definition of Vω that B ∈ Vω.

Thus the Replacement Axiom holds in Vω.

8◦ Infinity Axiom. This axiom asserts that the collection of all the natural numbers, N,
is a set. For this axiom to be true if the universe of sets was Vω, we would need to have
N ∈ Vω. However, every set in Vω is finite: using facts noted previously, if x ∈ Vω, then
x ∈ Vn for some n, and hence x ⊆ Vn. Since Vn is finite, x must also be finite. Since N is
infinite, it cannot be an element of Vω.

Thus the Infinity Axiom does not hold in Vω. Note that although N /∈ Vω, it is true
that every natural number n is an element of Vω, i.e. N ⊆ Vω.

Our final tally is that every one of the axioms we have looked at (the so-called Zermelo-
Fraenkel (ZF) axioms for set theory), except for the Infinity Axiom, are true in Vω. �
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