Mathematics 2200H - Mathematical Reasoning

Trent University, Fall 2020
Solutions to Assignment \#2+2
An almost universe of set theory
Due on Friday, 9 October.
Let's define sets V_{n} for all $n \geq 0$ as follows:

$$
\begin{aligned}
& V_{0}=\emptyset \\
& \text { If } V_{n} \text { has been defined for some } n \geq 0 \text {, let } V_{n+1}=\mathcal{P}\left(V_{n}\right)=\left\{X \mid X \subseteq V_{n}\right\} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& V_{0}=\emptyset \\
& V_{1}=\mathcal{P}\left(V_{0}\right)=\mathcal{P}(\emptyset)=\{\emptyset\} \\
& V_{2}=\mathcal{P}\left(V_{1}\right)=\mathcal{P}(\{\emptyset\})=\{\emptyset,\{\emptyset\}\} \\
& V_{3}=\mathcal{P}\left(V_{2}\right)=\mathcal{P}(\{\emptyset,\{\emptyset\}\})=\{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\}
\end{aligned}
$$

and so on. For anyone who noticed that $V_{0}=\emptyset=0, V_{1}=S(0)=1$, and $V_{2}=S(1)=2$, please note that this pattern stops at $n=3: 3=S(2)=\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\} \subsetneq \mathcal{P}\left(V_{2}\right)=V_{3}$. It is, however, true that for all $n \geq 0$, we have that $0,1,2, \ldots, n$ are all elements of V_{n+1}, so it turns out that $n \subseteq V_{n}$ for all $n \geq 0$.

1. Give an inductive argument showing that $V_{n} \subseteq V_{n+1}$ for all $n \geq 0$. [4]

Solution. We will use induction on n to show that $V_{n} \subseteq V_{n+1}$ for all $n \geq 0$.
Base Step: $(n=0)$ By definition, $V_{0}=\emptyset$. Since the empty set is a subset of every set, it follows that $V_{0} \subseteq V_{1}$.
Inductive Hypothesis: For some $n \geq 0, V_{n} \subseteq V_{n+1}$.
Inductive Step: We need to show, assuming the Inductive Hypothesis, that $V_{n+1} \subseteq V_{n+2}$.
Suppose $x \in V_{n+1}$. Since $V_{n+1}=\mathcal{P}\left(V_{n}\right)=\left\{x \mid x \subset V_{n}\right\}$ by definition, this means that $x \subseteq V_{n}$. By the Inductive Hypothesis, $V_{n} \subseteq V_{n+1}$, so $x \subseteq V_{n+1}$ too. It now follows that $x \in \mathcal{P}\left(V_{n+1}\right)=V_{n+2}$. Hence every x in V_{n+1} is also in V_{n+2}, i.e. $V_{n+1} \subseteq V_{n+2}$.

Thus $V_{n} \subseteq V_{n+1}$ for all $n \geq 0$ by induction.
Note: It follows from 1 that if $n \leq k$, then $V_{n} \subseteq V_{k}$. A modification of the argument given above could be used to show this fact directly. Note also that it follows from the argument at the inductive step that if $x \in V_{n}$, then $x \subseteq V_{n}$. (This is vacuously true for $n=0$.)

What happens when we put all of the $V_{n} \mathrm{~s}$ together? To put it another way, what is the "limit" of the increasing sequence of sets $V_{0} \subseteq V_{1} \subseteq V_{2} \subseteq V_{3} \subseteq \cdots$? It's the following object:

$$
V_{\omega}=\bigcup_{n=0}^{\infty} V_{n}=\left\{x \mid x \in V_{n} \text { for some } n \geq 0\right\}
$$

V_{ω} is an infinite set since $\mathbb{N}=\{0,1,2,3, \ldots\} \subseteq V_{\omega}$. (Why?) In fact, it is large and complex enough that most of the axioms of set theory would be true if the universe of sets were V_{ω}.
2. Which of the axioms of set theory, as developed in the set theory lectures I-IV, would be true if the universe of sets was V_{ω} ? Explain why or why not for each. [6]
Solution. We'll run through the axioms of set theory we have so far and see if they would be true if V_{ω} was the collection of all the sets there were.
0° Empty Set Axiom. This axiom asserts that there exists a set which has no elements. For this to be true in V_{ω}, there must be a set in V_{ω} which has no elements that are also in V_{ω}. The actual empty set is an element of $V_{1}=\{\emptyset\}$, and hence of V_{ω} (by its definition), and \emptyset has no elements that are in V_{ω} (or anywhere else :-).

Thus the Empty Set Axiom holds in V_{ω}.
1° Pair Set Axiom. This axiom asserts that if x and y are sets, then $\{x, y\}$ is also a set. For this to be true in V_{ω}, we we need to have that for all $x, y \in V_{\omega}$, we also have $\{x, y\} \in V_{\omega}$.

Suppose $x, y \in V_{\omega}$. By the definition of V_{ω}, there exist $n, m \in \mathbb{N}$ such that $x \in V_{n}$ and $y \in V_{m}$. Let $k=\max (n . m)$. It follows from 1 that $V_{n} \subseteq V_{k}$ and $V_{m} \subseteq V_{k}$, so $x, y \in V_{k}$. It follows that $\{x, y\} \subseteq V_{k}$, and so $\{x, y\} \in \mathcal{P}\left(V_{k}\right)=V_{k+1}$. By the definition of V_{ω}, it follows that $\{x, y\} \in V_{\omega}$.

Thus the Pair Set Axiom holds in V_{ω}.
2° Union Axiom. This axiom asserts that if x is a set, then the collection of all elements of elements of $x, \bigcup x=\bigcup_{y \in x} y=\{z \mid \exists y \in x((z \in y) \wedge(y \in x))\}$, is also a set. For this to be true in V_{ω}, we need to have that for all $x \in V_{\omega}$, we also have $\bigcup x \in V_{\omega}$.

Suppose $x \in V_{\omega}$. Then $x \in V_{n}$ for some $n \geq 1$ by the definition of $V_{\omega} .\left(V_{0}=\emptyset\right.$, so $x \notin V_{0} \ldots$) If $n=1$, then $x \in V_{1}=\{\emptyset\}$, so $x=\emptyset$. In this case $\bigcup x=\bigcup \emptyset=\emptyset \in V_{\omega}$. If $n \geq 2$, then $x \in V_{n}=\mathcal{P}\left(V_{n-1}\right)$, so $x \subseteq V_{n-1}$. That is, $y \in V_{n-1}=\mathcal{P}\left(V_{n-2}\right)$ for every $y \in x$, i.e. $y \subseteq V_{n-2}$ for every $y \in x$. It follows that $\bigcup x \subseteq V_{n-2}$, so $\bigcup x \in \mathcal{P}\left(V_{n-2}\right)=V_{n-1}$. Therefore, by the definition of $V_{\omega}, \bigcup x \in V_{\omega}$ in this case too.

Thus the Union Axiom holds in V_{ω}.
3° Power Set Axiom. This axiom asserts that if x is a set, then $\mathcal{P}(x)=\{y \mid y \subseteq x\}$ is also a set. For this to be true in V_{ω} we need to have that for all $x \in V_{\omega}$, we also have $\mathcal{P}(x) \in V_{\omega}$.

Suppose $x \in V_{\omega}$. Then $x \in V_{n}$ for some $n \geq 1$. (Again, $V_{0}=\emptyset$, so $x \notin V_{0}$.) Since $V_{n}=\mathcal{P}\left(V_{n-1}\right)$, it follows that $x \subseteq V_{n-1}$. This, in turn, means that if $y \subseteq x$, then $y \subseteq V_{n-1}$, and so $y \in \mathcal{P}\left(V_{n-1}\right)=V_{n}$. As $y \in V_{n}$ for every $y \subseteq x$, it follows that $\mathcal{P}(x)=\{y \mid y \subseteq x\} \subseteq V_{n}$, and hence that $\mathcal{P}(x) \in \mathcal{P}\left(V_{n}\right)=V_{n+1}$. Therefore, by the definition of V_{ω}, we have $\mathcal{P}(x) \in V_{\omega}$.

Thus the Power Set Axiom holds in V_{ω}.
4° Extension Axiom. This axiom asserts that two sets are equal if they have the same elements. For this to be true in V_{ω} we need to have that for all $x, y \in V_{\omega}, x=y$ if for all $z \in V_{\omega}, z \in x$ if and only if $z \in y$.

As was noted after the main proof for 1 above, part of that proof showed that if $x \in V_{n}$ for some $n \in \mathbb{N}$, then $x \subseteq V_{n}$. Since any $x \in V_{\omega}$ is there because $x \in V_{n}$ for some n and since $V_{n} \subseteq V_{\omega}$, it follows that $x \subseteq V_{\omega}$ for any $x \in V_{\omega}$. Thus if $x, y \in V_{o} m e g a$, we have that $z \in x$ if and only if $z \in y$ for all $z \in V_{\omega}$ actually boils down to $z \in x$ if and only if $z \in y$ for all z (since $x \subseteq V_{\omega}$ and $y \subseteq V_{\omega}$), so $x=y$.

Thus the Extension Axiom holds in V_{ω}.
5° Foundation Axiom. This axiom asserts that every non-empty set has an element with which the set has no elements in common, i.e. for every $x \neq \emptyset$ there is a $y \in x$ such that $y \cap x=\emptyset$. This is, in particular, true of all sets $x \in V_{\omega}$. As noted above, $x \subseteq V_{\omega}$ when $x \in V_{\omega}$, so a y in x with $y \cap x=\emptyset$ is also in V_{ω}.

Thus the Foundation Axiom holds in V_{ω}.
6° Comprehension Axiom. This axiom asserts that a definable subset of a set is also a set, i.e. if x is a set and $\varphi(z)$ is formula that is true or false depending on what set z is plugged into it, then $\{z \in x \mid \varphi(z)$ is true $\}$ is also a set. For this to be true in V_{ω} such definable subsets of sets in V_{ω} would also have to be in V_{ω}.

Suppose $x \in V_{\omega}$ and $y=\{z \in x \mid \varphi(z)$ is true $\}$ is a definable subset of x. Then $x \in V_{n}$ for some n and so, as previously noted, $x \subseteq V_{n}$ too. Since $y \subseteq x, y \subseteq V_{\omega}$ as well, so $y \in \mathcal{P}\left(V_{n}\right)=V_{n+1}$. By the definition of V_{ω}, it follows that $y \in V_{\omega}$.

Thus the Comprehension Axiom holds in V_{ω}.
To help deal with the Replacement and Infinity Axioms, we will first prove a small lemma:
Lemma. V_{n} is finite for every $n \in \mathbb{N}$.
Proof. We will proceed by induction on n.
Base Step. $(n=0) V_{0}=\emptyset$ has 0 elements, so it is finite.
Inductive Hypothesis. V_{n} is finite for some $n \geq 0$.
Inductive Step. We need to show that V_{n+1} is finite. By the Inductive Hypothesis, V_{n} is finite, say with k elements. Then $V_{n+1}=\mathcal{P}\left(V_{n}\right)$ has 2^{k} elements, because each subset of V_{n} is determined by making a choice for every one of the k elements of V_{n} of whether to include it in the subset or not. Thus V_{n+1} is also finite. //
7° Replacement Axiom. This axiom asserts that if we can define a function with a given domain, then the range of the function is also a set. More precisely, if A is a set and $\varphi(x, y)$ is a formula such that for every $x \in A$ there is exactly one set y making $\varphi(x, y)$ true, then $B=f^{\prime \prime} A=\{y \mid \exists x \in A: \varphi(x, y)$ is true $\}$ is also a set. For this to be true in V_{ω} we need to have that if $A \in V_{\omega}$ and $\varphi(x, y)$ is a formula such that for every $x \in A$ there is exactly one set $y \in V_{\omega}$ making $\varphi(x, y)$ true, then $B=\{y \mid \exists x \in A: \varphi(x, y)$ is true $\} \in V_{\omega}$.

Suppose that $A \in V_{\omega}$ and $\varphi(x, y)$ is a formula such that for every $x \in A$ there is exactly one set $y \in V_{\omega}$ making $\varphi(x, y)$ true. Note that each such $y \in V_{\omega}$ must be an element of V_{n} for some n by the definition of V_{ω}. Let $m=\max \left\{n \in \mathbb{N} \mid \exists x \in A \exists y\left(\varphi(x, y) \wedge\left(y \in V_{n}\right)\right)\right\}$. This maximum is well defined because $A \in V_{k}$ for some k, so $A \subseteq V_{k}$, and V_{k} is finite by the Lemma, so A is finite. Then $B=\{y \mid \exists x \in A: \varphi(x, y)$ is true $\} \subseteq V_{m}$, so $B \in$ $\mathcal{P}\left(V_{m}\right)=V_{m+1}$. It follows by the definition of V_{ω} that $B \in V_{\omega}$.

Thus the Replacement Axiom holds in V_{ω}.
8° Infinity Axiom. This axiom asserts that the collection of all the natural numbers, \mathbb{N}, is a set. For this axiom to be true if the universe of sets was V_{ω}, we would need to have $\mathbb{N} \in V_{\omega}$. However, every set in V_{ω} is finite: using facts noted previously, if $x \in V_{\omega}$, then $x \in V_{n}$ for some n, and hence $x \subseteq V_{n}$. Since V_{n} is finite, x must also be finite. Since \mathbb{N} is infinite, it cannot be an element of V_{ω}.

Thus the Infinity Axiom does not hold in V_{ω}. Note that although $\mathbb{N} \notin V_{\omega}$, it is true that every natural number n is an element of V_{ω}, i.e. $\mathbb{N} \subseteq V_{\omega}$.

Our final tally is that every one of the axioms we have looked at (the so-called ZermeloFraenkel (ZF) axioms for set theory), except for the Infinity Axiom, are true in V_{ω}.

