Mathematics 2200H – Mathematical Reasoning TRENT UNIVERSITY, Fall 2020

Solution to Assignment #1011₂ Subsets and Functions Due on Friday, 4 December.

Recall that the power set of a set A is $\mathcal{P}(A) = \{X \mid X \subseteq A\}$. The somewhat ugly notation ^A2 denotes the set of functions from A to $2 = \{0, 1\}$, that is

 $^{A}2 = \{ f \mid f \text{ is a function } A \to \{0,1\} \} .$

1. Show that $||^A 2|| = ||\mathcal{P}(A)||$ for any set $A \neq \emptyset$. [10]

Hint: Going back to the definition of cardinality, you need to find a suitable correspondence between functions $f : A \to \{0, 1\}$ and subsets $X \subseteq A$.

SOLUTION. Define $\chi : {}^{A}2 \to \mathcal{P}(A)$ by $\chi(f) = \{ a \in A \mid f(a) = 1 \}$. We claim that χ is 1–1 and onto.

Suppose $f, g \in {}^{A}2$ and $f \neq g$. Since the two functions $A \to 2$ are not equal, there is some $a \in A$ for which $f(a) \neq g(a)$. As each of f(a) and g(a) is either 0 or 1, this means that either f(a) = 1 and g(a) = 0 or f(a) = 0 and g(a) = 1. In the former case $a \in \chi(f)$ but $a \notin \chi(g)$ and in the latter case $a \in \chi g$ but $a \notin \chi(f)$. Either way, $\chi(f) \neq \chi(g)$. Thus χ is 1–1.

Suppose $X \in \mathcal{P}(A)$, *i.e.* $X \subseteq A$. Define $f : A \to 2$ by $f(a) = \begin{cases} 1 & a \in X \\ 0 & a \notin X \end{cases}$. It then follows from the definition of χ that $\chi(f) = \{a \in A \mid f(a) = 1\} = \{a \in A \mid a \in X\} = X$. Thus χ is onto.

Since we have a 1–1 function $\chi : {}^{A}2 \to \mathcal{P}(A)$, we have $||^{A}2|| = ||\mathcal{P}(A)||$ by the definition of cardinality.