Mathematics 2200H – Mathematical Reasoning

TRENT UNIVERSITY, Fall 2020

Solutions to Assignment #1 Counting the Hard Way

John von Neumann devised the following way of building the natural numbers (*i.e.* the non-negative integers) from pretty much nothing at all. Let \emptyset denote the empty set and let S be the operation on sets defined by $S(x) = x \cup \{x\}$. (That is, S(x) contains every element of x, plus x itself as an element.) Here we go:

$$0 = \emptyset$$

Given that n has been defined, let $n + 1 = S(n)$.

Let's see what this really means:

$$\begin{array}{l} 0 = \emptyset \\ 1 = S(0) = 0 \cup \{0\} = \emptyset \cup \{\emptyset\} = \{\emptyset\} \\ 2 = S(1) = 1 \cup \{1\} = \{\emptyset\} \cup \{\{\emptyset\}\} = \{\emptyset, \{\emptyset\}\} \} \\ 3 = S(2) = 2 \cup \{2\} = \{\emptyset, \{\emptyset\}\} \cup \{\{\emptyset, \{\emptyset\}\}\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \} \\ 4 = S(3) = 3 \cup \{3\} = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \cup \{\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\} \} \\ = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\} \} \} \end{array}$$

$$\vdots$$

The price of starting with almost nothing at all – and failing to later adopt some notation (like decimal notation :-) that would make natural numbers more compact and readable – is that one has to deal with some rather cumbersome expressions. For example, imagine writing out

$$\left\{\,\emptyset,\,\left\{\emptyset\right\}\,\right\} + \left\{\,\emptyset,\,\left\{\emptyset\right\}\,\right\} = \left\{\,\emptyset,\,\left\{\emptyset\right\},\,\left\{\,\emptyset,\,\left\{\emptyset\right\}\,\right\}\,,\,\left\{\,\emptyset,\,\left\{\emptyset\right\},\,\left\{\,\emptyset,\,\left\{\emptyset\right\}\,\right\}\,\right\}\,\right\}\,\right\}$$

instead of 2+2=4. Von Neumann just wanted a way to define the natural numbers in a minimalist language of set theory in which additional symbols were not available. His definition has some interesting properties, though, a couple of which will be investigated by you for this assignment. In what follows, assume that we use von Neumann's definition to define each natural number.

1. Explain why every $n \ge 0$ has exactly n elements. [3]

SOLUTION. By definition, $0 = \emptyset$ has zero elements because it is empty, and $1 = S(0) = 0 \cup \{0\} = \{0\}$ has one element. Note that each is the set consisting of all of its predecessors. $(0 = \emptyset)$ because it has no predecessors.) Given that we know that some $n \ge 1$ has n elements and $n = \{0, 1, \ldots, n-1\}$, it follows, by definition, that $n+1 = S(n) = n \cup \{n\} = \{0, 1, \ldots, n-1\} \cup \{n\} = \{0, 1, \ldots, n-1, n\}$ has n+1 elements.

The above bit of reasoning is a slightly informal inductive argument. We'll be seeing a lot of induction at certain points in the course. \Box

2. How many symbols (counting repetitions) does it take to write out each $n \geq 0$ in purely set-theoretic form? Explain why! [7]

NOTE. $0 = \emptyset$ needs only one symbol, namely \emptyset ; $1 = \{\emptyset\}$ needs three symbols (one \emptyset and the two braces); $2 = \{\emptyset, \{\emptyset\}\}$ needs seven symbols (two \emptyset , four braces, and a comma); and so on.

SOLUTION. As observed in the note, 0 needs only one symbol, namely \emptyset , and 1 requires three symbols, namely $\{\emptyset\}$. After that, the inductive process $n+1=S(n)=n\cup\{n\}$ plays out in a uniform way in how it affects the symbols required:

To write out n+1 in purely set-theoretic form, you take the set-theoretic form of $n=\{0,1,\ldots,n-1\}$, add a comma after the (set-theoretic form of) n-1, and then insert a copy of the set-theoretic form of n, just after the new comma to get the purely set-theoretic form of $n+1=S(n)=n\cup\{n\}=\{0,1,\ldots,n-1,n\}$. This means that if n required k symbols, n+1 requires k symbols for the original n, 1 new comma, and k more symbols for the inserted copy of n, for a total of 2k+1 symbols.

It follows that writing out $n \ge 0$ in purely set-theoretic form requires $2^{n+1}-1$ symbols. n=0 requires $2^{0+1}-1=2-1=1$ symbol and n=1 requires $2^{1+1}-1=4-1=3$ symbols. After that, given that we know that $n \ge 1$ requires $2^{n+1}-1$ symbols, n+1 will require $2(2^{n+1}-1)+1=2^{(n+1)+1}-2+1=2^{(n+1)+1}-1$, as claimed.

Again the reasoning just above is a slightly informal inductive argument. \Box

NOTE. If your analysis and reasoning looked different from those given above, you are not necessarily (or even likely) to be wrong: in most mathematics problems there is more than one correct way to get the job done. For example, a slightly different way of looking at problem 2 above (you get to guess what it is if you didn't use it) would yield a count of $1+2+4+\cdots+2^n=2^{n+1}-1$ for the number of symbols to write n in purely set-theoretic form. Same final answer, but a different way to get there.