Mathematics 2200H – Mathematical Reasoning TRENT UNIVERSITY, Fall 2020 Assignment #0 + 1 + 2 + 3Skipping a few number systems ahead ...:-)

Due on Friday, 23 October.

The quaternions are the number system after the complex numbers:

 $\mathbb{H} = \{ a + bi + ci + dj \mid a, b, c, d \in \mathbb{R} \}$

where + and \cdot work as usual except for the special numbers i, j, and k, which satisfy the following relations:

$$i^{2} = j^{2} = k^{2} = -1$$

 $ij = k \quad jk = i \quad ki = j$
 $ji = -k \quad kj = -i \quad ik = -j$

Note that you have multiple square roots of -1 and that multiplication is not always commutative in the quaternions.

1. Suppose
$$\mathbf{a} = \begin{bmatrix} p \\ q \\ r \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} s \\ t \\ u \end{bmatrix}$ are two vectors in \mathbb{R}^3 and that $(pi + qj + rk)(si + tj + uk) = a + bi + ci + dj$. Verify that $\mathbf{a} \times \mathbf{b} = \begin{bmatrix} b \\ c \\ d \end{bmatrix}$. What does the real number a represent in terms of the vectors \mathbf{a} and \mathbf{b} ? [5]

2. Suppose $h = a + bi + ci + dj \in \mathbb{H}$ and $h \neq 0$. Express $h^{-1} = \frac{1}{h}$ as a quaternion in terms of a, b, c, and d. [5]