Mathematics 2200H – Mathematical Reasoning TRENT UNIVERSITY, Fall 2019

teni Univensiii, ran 20

Assignment the Extra Not Not Nothing

Due on Wednesday, 4 December.

Here is a formal definition of a minimal language for propositional logic:

The symbols of the language are as follows:

```
Atomic formulas: A_0, A_1, A_2, \ldots
Connectives: \neg, \rightarrow
Parentheses: (, )
```

Just to be paranoid: all of the above symbols are distinct, none is a substring of any other, and there are no other symbols in the language.

The *formulas* of the language are defined as follows:

- 1. Every atomic formula A_i is a formula of the language.
- 2. If φ and ψ are any formulas of the language, then $(\neg \varphi)$ and $(\varphi \rightarrow \psi)$ are also formulas of the language.
- 3. No string of symbols of the language is a formula of the language unless it was formed using finitely many applications of rules 1 and 2 above.

The logical axiom schema for this variant of propositional logic are as follows. If α , β , and γ are any formulas of the language, then each of the following is an axiom, which may be assumed to be true without further ado:

A1. $(\alpha \to (\beta \to \alpha))$ A2. $((\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)))$ A3. $(((\neg \beta) \to (\neg \alpha)) \to (((\neg \beta) \to \alpha) \to \beta))$

The only rule of procedure in this variant of propositional logic is Modus Ponens. Suppose δ and η are any formula of the language.

MP. If δ and $(\delta \rightarrow \eta)$ are both true, then η is true.

Finally, a *deduction* from some set of hypotheses H in this variant of propositional logic is a finite sequence of formulas, say $\varphi_1, \varphi_2, \varphi_3, \ldots, \varphi_n$ for some $n \ge 1$, such that each φ_k is in H, is an instance of one of the logical axiom schema, or follows from preceding formulas in the deduction by Modus Ponens, *i.e.* there are φ_i and φ_j for some i, j < k earlier in the sequence such that φ_j is $(\varphi_i \to \varphi_k)$.

For example, here is a deduction from an empty set of hypotheses, *i.e.* using only the logical axiom schema and Modus Ponens, of $(\varphi \rightarrow \varphi)$, where φ could be any formula of the language:

1. $(\varphi \to ((\varphi \to \varphi) \to \varphi))$ [A1] 2. $((\varphi \to ((\varphi \to \varphi) \to \varphi)) \to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi)))$ [A2] 3. $((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$ [1,2 MP] 4. $(\varphi \to (\varphi \to \varphi))$ [A1] 5. $(\varphi \to \varphi)$ [3, 4 MP]

1. Give a deduction of $((\neg(\neg\varphi)) \rightarrow \varphi)$ from an empty set of hypotheses. [5]

2. Give a deduction of $(\varphi \to (\neg(\neg \varphi)))$ from an empty set of hypotheses. [5]