Mathematics 2200H – Mathematical Reasoning

TRENT UNIVERSITY, Fall 2019

Assignment #8

Rational Thoughts

 $Due\ on\ Monday,\ 4\ November.$

Recall that we defined the rational numbers as follows:

The equivalence relation \approx on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) = \{ (a, b) \mid a, b \in \mathbb{Z} \land b \neq 0 \}$ is defined by $(a, b) \approx (c, d) \iff ad = bc$. Then $\mathbb{Q} = \{ [(a, b)]_{\approx} \mid a, b \in \mathbb{Z} \land b \neq 0 \}$.

Intuitively, $(a, b) \approx (c, d)$ if the pairs have the same ratio, *i.e.* $\frac{a}{b} = \frac{c}{d}$, so the equivalence class $[(a, b)]_{\approx}$ represents the ratio $\frac{a}{b}$.

We then defined multiplication on the rational numbers by $[(a,b)]_{\approx} \cdot [(c,d)]_{\approx} = [(ac,bd)]_{\approx}$ and showed that it was commutative. Also, we let $0 = 0_{\mathbb{Q}} = [(0,1)]_{\approx}$ and $1 = 1_{\mathbb{Q}} = [(1,1)]_{\approx}$.

In what follows, you may assume that the usual algebraic operations on the integers have all the usual properties.

- 1. Show that non-zero rational numbers have multiplicative inverses: if $p \in \mathbb{Q}$ and $p \neq 0$, then there is a $p^{-1} \in \mathbb{Q}$ such that $pp^{-1} = 1$. [5]
- **2.** Show that multiplication on \mathbb{Q} satisfies the Cancellation Law: if $p, q, r \in \mathbb{Q}$, where $r \neq 0$, and pr = qr, then p = q. [5]

Recall that we're changing the due dates for our weekly assignments to Mondays instead of Fridays so that we can make more effective use of our seminars.