Mathematics 2200H — Mathematical Reasoning
TRENT UNIVERSITY, Fall 2017

Solutions to Assignment #9
Some counting

1. Show that if n > 1, then (g) - G‘) + (Z) e (—1)m <Z) =0. [2

SOLUTION. Here we go:
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2. What does ,; W k)l add up to? Why? [2]
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SOLUTION. Observe that:
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3. Without using the fact that e = E %, show that < E H) = E —- [?]
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and the trick now is to rearrange this sum of products and apply the result of question 2

above:
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4. Let N2 ={f | f:N—=1{0, 1}} be the set of all functions from N to 2 = {0, 1}, and
let P(N) = {X | X C N} be the set of all subsets of N. Show that |N2| = |P(N)|. /4]

SOLUTION. Define a function y : N2 — P(N) by setting x(f) = {n € N| f(n) =1}. We
will show that y is both 1-1 and onto.

First, suppose f, g € N2 and f # g. This means that there is some k& € N such that
f(k) # g(k), so either f(k) =1 and g(k) = 0, or f(k) = 0 and g(k) = 1. In the former
case, k € x(f) but not in x(g), and in the latter case, k € x(g) but not in x(f). Either

way, X(f) # x(g), and so x must be 1-1.
1 ned

Second, suppose A C N. Define f € Y2 by f(n) = { 0 sA° It then follows from
n
the definition of y that x(f) = {n € N| f(n) =1} = A. Thus x must also be onto.
Since x : Y2 — P(N) is both 1-1 and onto, it follows by the definition of |X| that

N2| = |P(N)]. m



