
Mathematics 2200H – Mathematical Reasoning
Trent University, Fall 2017

Solutions to Assignment #9
Some counting
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Solution. Here we go:
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2. What does
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Solution. Observe that:
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Solution.
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and the trick now is to rearrange this sum of products and apply the result of question 2
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4. Let N2 = { f | f : N→ { 0, 1 } } be the set of all functions from N to 2 = { 0, 1 }, and
let P(N) = {X | X ⊆ N } be the set of all subsets of N. Show that

∣∣N2
∣∣ = |P(N)|. [4]

Solution. Define a function χ : N2 → P(N) by setting χ(f) = {n ∈ N | f(n) = 1 }. We
will show that χ is both 1–1 and onto.

First, suppose f, g ∈ N2 and f 6= g. This means that there is some k ∈ N such that
f(k) 6= g(k), so either f(k) = 1 and g(k) = 0, or f(k) = 0 and g(k) = 1. In the former
case, k ∈ χ(f) but not in χ(g), and in the latter case, k ∈ χ(g) but not in χ(f). Either
way, χ(f) 6= χ(g), and so χ must be 1–1.

Second, suppose A ⊂ N. Define f ∈ N2 by f(n) =

{
1 n ∈ A
0 n /∈ A

. It then follows from

the definition of χ that χ(f) = {n ∈ N | f(n) = 1 } = A. Thus χ must also be onto.
Since χ : N2 → P(N) is both 1–1 and onto, it follows by the definition of |X| that∣∣N2
∣∣ = |P(N)|. �
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