
Mathematics 2200H – Mathematical Reasoning
Trent University, Fall 2017

Assignment #6
The integers

Recall from class that we defined the natural numbers from the empty set, ∅, and
the successor function, S(x) = x ∪ {x}, and then proceeded to define addition of natural
numbers by recursion from the successor function: n + 0 = n and, given that n + k has
been defined, n + S(k) = S(n + k). Multiplication of natural numbers was then defined
by recursion from addition in a similar way. We also defined the predecessor function,
P (0) = 0 and P (S(k)) = k, and used it to define a difference function, D(a, b) = a − b if
a > b and D(a, b) = 0 otherwise, which is as close as you can get to proper subtraction
without having negative numbers. This assignment is concerned with building the set of
integers, Z, from the natural numbers using equivalence relations.

Definition. Let N×N = { (a, b) | a, b ∈ N } be the collection of all ordered pairs
of natural numbers. Define a binary relation ∼ on N×N by letting (a, b) ∼ (c, d)
if and only if a + d = c + b.

Informally, (a, b) ∼ (c, d) exactly when a − b = c − d. (This has to be informal at
the moment since we don’t have real subtraction yet because the natuiral numbers don’t
include negatives.)

1. Show that ∼ is an equivalence relation on N× N. [4]

Solution. We need to show that ∼ is reflexive, symmetric, and transitive.

∼ is reflexive: By definition, (a, b) ∼ (a, b) ⇐⇒ a + b = a + b, which last is always true.

∼ is symmetric: By the definition of ∼ and the fact that = is symmetric, (a, b) ∼ (c, d) ⇐⇒
a + d = c + b ⇐⇒ c + b = a + d ⇐⇒ (c, d) ∼ (a, b), as required.

∼ is transitive: Suppose (a, b) ∼ (c, d) and (c, d) ∼ (e, f). By definition, this means that
a + d = c + b and c + f = e + d, so (a + d) + (c + f) = (b + c) + (e + d). Since addition on
N is associative and commutative, we can rearrange and regroup on both sides of the last
equation to get (a+f)+(c+d) = (e+b)+(c+d). Then a+f = D ((a + f) + (c + d), c + d) =
D ((e + b) + (c + d), c + d) = e + b (alternatively, use the fact that addition on N satisfies
the cancellation law to cancel the c + d terms), from which it follows that (a, b) ∼ (e, f),
as required.

Since the binary relation ∼ on N × N is reflexive, symmetric, and transitive, it is an
equivalence relation. �

Definition. Denote the equivalence class of (a, b) ∈ N × N by [(a, b)]∼. Then
Z = { [(a, b)]∼ | (a, b) ∈ N× N }, and we can define addition on Z by [(a, b)]∼ +
[(c, d)]∼ = [(a + c, b + d)]∼, where a+ c and b+ d are computed using addition of
natural numbers.
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2. Show that addition is “well-defined” on Z. That is, its definition does not really de-
pend on which representatives you pick from each equivalence class: if [(a, b)]∼ =
[(x, y)]∼ and [(c, d)]∼ = [(u, v)]∼, then [(a, b)]∼ + [(c, d)]∼ = [(a + c, b + d)]∼ =
[(x + u, y + v)]∼ = [(x, y)]∼ + [(u, v)]∼. [3]

Solution. Suppose [(a, b)]∼ = [(x, y)]∼ and [(c, d)]∼ = [(u, v)]∼. By the definition of
equivalence classes for ∼, this means that (a, b) ∼ (x, y) amd (c, d) ∼ (u, v), which, by the
definition of ∼, means that a+y = x+b and c+v = u+d, and hence that (a+y)+(c+v) =
(x + b) + (u + d). With a little help from the commutativity and associativity of + for N,
it now follows that

(a + c) + (y + v) = (a + y) + (c + v) = (x + b) + (u + d) = (x + u) + (b + d),

so (a + c, b + d) ∼ (x + u, y + v) by the definition of ∼, and thus [(a + c, b + d)]∼ =
[(x + u, y + v)]∼. It follows that

[(a, b)]∼ + [(c, d)]∼ = [(a + c, b + d)]∼ = [(x + u, y + v)]∼ = [(x, y)]∼ + [(u, v)]∼ ,

as required. �

3. Define subtraction and multiplication on Z. [3]

Solution. Define subtraction on Z by [(a, b)]∼ − [(c, d)]∼ = [(a + d, b + c)]∼. Informally,
using the idea that [(x, y)]∼ represents the difference x − y, this definition amounts to
noticing that (a− b)− (c− d) = (a + d)− (b + c).

Define multiplication on Z by [(a, b)]∼ · [(c, d)]∼ = [(ac + bd, ad + bc)]∼. Informally,
this boils down to (a− b)(c− d) = (ac + bd)− (ad + bc).

One ought to check that both of these definitions are also “well-defined” before using
them, but I didn’t ask for that . . . :-) �
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