Mathematics 2200H – Mathematical Reasoning TRENT UNIVERSITY, Fall 2017 Solutions to Assignment #2 Digits and Divisibility

Suppose $b \in \mathbb{N}$ and b > 1. If n is any positive natural number, then there are unique natural numbers k and d_k , d_{k-1} , ..., d_0 , such that $0 \le d_i < b$ for each i with $0 \le i \le k$, $d_k \ne 0$, and $n = d_k b^k + d_{k-1} b^{k-1} + \cdots + d_0 b^0$. The base b representation of n is then the sequences of digits $d_k d_{k-1} \ldots d_0$; if we need to emphasize that it is in base b, we will often write something like $(d_k d_{k-1} \ldots d_0)_b$. For example, consider $533 = (533)_{10}$. 533 would be written as 1000010101 in base 2 because $533 = 512 + 16 + 4 + 1 = 1 \cdot 2^9 + 0 \cdot 2^8 + 0 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$.

1. Suppose $n = (d_k d_{k-1} \dots d_1 d_0)_{10}$. Show that $3 \mid n \iff 3 \mid (d_k + d_{k-1} + \dots + d_1 + d_0)$. For which natural numbers > 1 other than 3 does this trick work? [5]

SOLUTION. Here goes:

$$3 \mid n \Longleftrightarrow n \equiv 0 \pmod{3}$$

$$\iff (d_k d_{k-1} \dots d_0)_{10} \equiv 0 \pmod{3} \iff (d_k 10^k + d_{k-1} 10^{k-1} + \dots + d_1 10^1 + d_0 10^0) \equiv 0 \pmod{3} \iff (d_k 1^k + d_{k-1} 1^{k-1} + \dots + d_1 1^1 + d_0 1^0) \equiv 0 \pmod{3} \text{ [Since } 10 \equiv 1 \pmod{3}.] \iff (d_k + d_{k-1} + \dots + d_1 + d_0) \equiv 0 \pmod{3} \iff 3 \mid (d_k + d_{k-1} + \dots + d_1 + d_0) \qquad \Box$$

2. Given a base b, for which integers c is it true that whenever $n = (d_k d_{k-1} \dots d_1 d_0)_b$, we have $c \mid n \iff c \mid (d_k + d_{k-1} + \dots + d_1 + d_0)$? [2]

SOLUTION. To use the argument given in the solution to 1 above, with 3 replaced by c and base 10 replaced by base b, all you need is to have $b \equiv 1 \pmod{c}$. \Box

3. Devise a similar trick for testing for divisiblity by 11 in base 10. [3] SOLUTION. Note that $10 \equiv -1 \pmod{11}$. This means that:

$$11 \mid n \iff n \equiv 0 \pmod{11}$$

$$\iff (d_k d_{k-1} \dots d_0)_{10} \equiv 0 \pmod{11}$$

$$\iff (d_k 10^k + d_{k-1} 10^{k-1} + \dots + d_1 10^1 + d_0 10^0) \equiv 0 \pmod{11}$$

$$\iff (d_k (-1)^k + d_{k-1} 9_1)^{k-1} + \dots + d_1 (-1)^1 + d_0 (-1)^0) \equiv 0 \pmod{11}$$

$$\iff (d_0 - d_1 + d_2 - \dots + (-1)^k d_k) \equiv 0 \pmod{11}$$

$$\iff 11 \mid (d_0 - d_1 + d_2 - \dots + (-1)^k d_k)$$

This means that 11 divides n, written out in base 10, if and only if 11 divides the number obtained by alternately adding and subtracting all the digits of n. \Box