Mathematics 2200H – Mathematical Reasoning

TRENT UNIVERSITY, Fall 2017

Assignment #2 Digits and Divisibility Due on Thursday, 21 September.

Suppose $b \in \mathbb{N}$ and b > 1. If n is any positive natural number, then there are unique natural numbers k and d_k , d_{k-1} , ..., d_0 , such that $0 \le d_i < b$ for each i with $0 \le i \le k$, $d_k \ne 0$, and $n = d_k b^k + d_{k-1} b^{k-1} + \cdots + d_0 b^0$. The base b representation of n is then the sequences of digits $d_k d_{k-1} \ldots d_0$; if we need to emphasize that it is in base b, we will often write something like $(d_k d_{k-1} \ldots d_0)_b$. For example, consider $533 = (533)_{10}$. 533 would be written as 1000010101 in base 2 because $533 = 512 + 16 + 4 + 1 = 1 \cdot 2^9 + 0 \cdot 2^8 + 0 \cdot 2^7 + 0 \cdot 2^6 + 0 \cdot 2^5 + 1 \cdot 2^4 + 0 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$.

- **1.** Suppose $n = (d_k d_{k-1} \dots d_1 d_0)_{10}$. Show that $3 \mid n \iff 3 \mid (d_k + d_{k-1} + \dots + d_1 + d_0)$. For which natural numbers > 1 other than 3 does this trick work? [5]
- **2.** Given a base b, for which integers c is it true that whenever $n = (d_k d_{k-1} \dots d_1 d_0)_b$, we have $c \mid n \iff c \mid (d_k + d_{k-1} + \dots + d_1 + d_0)$? [2]
- **3.** Devise a similar trick for testing for divisiblity by 11 in base 10. [3]

On Problems

Problems worthy of attack Prove their worth by hitting back. Another grook by Piet Hein.