Mathematics 2200H - Mathematical Reasoning

Trent University, Fall 2016

Assignment \#8

Suprema and Infima

Due on Thursday, 10 November.
The supremum or least upper bound of a non-empty set X of real numbers is the real number a such that:

- a is an upper bound for X, i.e. $x \leq a$ for all $x \in X$.
- If u is any upper bound for X, then $a \leq u$.

Similarly, the infimum or greatest lower bound of a non-empty set X of real numbers is the real number b such that:

- b is a lower bound for X, i.e. $b \leq x$ for all $x \in X$.
- If ℓ is any lower bound for X, then $\ell \leq b$.

Note that X can have a supremum, usually denoted by $\sup (X)$, only if it is bounded above, and an infimum, usually denoted by $\inf (X)$, only if it is bounded below.

1. Using the definition of real numbers as schnitts, show that $\sup (X)=\bigcup_{x \in X} x$ whenever $X \neq \emptyset$ is a set of real numbers with an upper bound. Can you find a similar way to obtain $\inf (X)$ in terms of schnitts whenever $X \neq \emptyset$ is a set of real numbers with a lower bound? [4]
2. Suppose $\emptyset \neq X \subset \mathbb{R}$ is bounded above, and let $Y=\{-x \mid x \in X\}$. Show that Y is bounded below and that $\inf (Y)=-\sup (X)$. [3]
3. Suppose $\emptyset \neq Y \subseteq X \subset \mathbb{R}$ and X (and hence also Y) is bounded above and below. Show that $\inf (X) \leq \inf (Y) \leq \sup (Y) \leq \sup (X)$. [2]
4. Suppose $\emptyset \neq X \subset \mathbb{R}$ is a set such that $\inf (X)=\sup (X)$. What can you deduce about X ? [1]
