Mathematics 2200H – Mathematical Reasoning TRENT UNIVERSITY, Fall 2015

Assignment #9

Due on Monday, 23 November, 2015.

Epsolinics Epsilinocs Epsilonics

Recall that a *sequence* of real numbers is a list indexed by the natural numbers,

 $a_0, a_1, a_2, a_3, \ldots, a_n, \ldots$

usually denoted by something like $\{a_n\}$. The *limit* of a sequence $\{a_n\}$ is a real number L, usually denoted by $\lim_{n \to \infty} a_n = L$, if

for every real number $\varepsilon > 0$, there is some $N \in \mathbb{N}$, such that for every $n \ge N$, $|a_n - L| < \varepsilon$,

i.e. $\forall \varepsilon > 0 \exists N \in \mathbb{N} \forall n \in N : |a_n - L| < \varepsilon.$

1. Suppose $\{a_n\}$ is a sequence such that $\lim_{n \to \infty} a_n = L \neq 0$. Show that if $b_n = \frac{1}{a_n}$, then $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{1}{a_n} = \frac{1}{L}$. [10]