Mathematics 2200H – Mathematical Reasoning

TRENT UNIVERSITY, Fall 2015

Assignment #S(3) Due on Tuesday, 13 October, 2015.

Induction

Recall from class that we defined + and \cdot on \mathbb{N} by induction from the successor function, $S(n) = n \cup \{n\}$ (informally, of course, S(n) = n + 1) as follows:

- For all $n \in \mathbb{N}$, let n + 0 = n.
- For all $n, k \in \mathbb{N}$, given that n + k has been defined, let n + S(k) = S(n + k).

and, given that + has been defined,

- For all $n \in \mathbb{N}$, let $n \cdot 0 = 0$.
- For all $n, k \in \mathbb{N}$, given that $n \cdot k$ has been defined, let $n \cdot S(k) = (n \cdot k) + n$.

We showed in class that + was commutative, *i.e.* n + k = k + n for all $n, k \in \mathbb{N}$, using lots of induction.

1. Use induction to show that \cdot is associative on \mathbb{N} , *i.e.* $(n \cdot k) \cdot m = n \cdot (k \cdot m)$ for all $n, k, m \in \mathbb{N}$. You may assume all the usual algebraic properties of +, as well as the commutativity of \cdot and the fact that $n \cdot 1 = n$ for all $n \in \mathbb{N}$. [10]