1. Let X and Y be a discrete random variables with distributions

$$
f(x)=\left\{\begin{array}{ll}
\frac{1}{3} & x=-1,0,1 \\
0 & \text { otherwise }
\end{array} \quad g(y)= \begin{cases}\frac{1}{3} & y=-2,0,2 \\
0 & \text { otherwise }\end{cases}\right.
$$

respectively.
(a) Find the mean and variance for X.
(b) Find the mean and variance for Y.
2. Let random variable X be sum of two regular six sided dice. Find the mean and variable of X.
3. Let X be a continuous random variable with probability density

$$
f(x)= \begin{cases}2 x & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the mean of X.
(b) Find the variance of X.
(c) Find the third moment about the mean of X.
4. In a certain manufacturing process, the (Fahrenheit) temperature never varies by more than 2° from 62°. The temperature is a random variable F with distribution

$$
\begin{array}{c|ccccc}
x & 60 & 61 & 62 & 63 & 64 \\
\hline P(F=x) & 1 / 10 & 2 / 10 & 4 / 10 & 2 / 10 & 1 / 10
\end{array}
$$

(a) Find the mean of and variance of F.
(b) To convert to the measurements to degrees Celsius we let $C=\frac{5}{9}(F-32)$. Find the mean and variance of C.
5. Suppose X is a continuous random variable with probability density

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

for all $x \in \mathbb{R}$. It can be shown that X has moment generating function

$$
M_{X}(t)=e^{\frac{t^{2}}{2}}
$$

Find the mean and variance of X.

