1. Let X and Y be discrete random variables with the following distributions.

$$
\begin{array}{c|cccc|ccccc}
x & 2 & 3 & 6 & 10 \\
\hline P(X=x) & 0.2 & 0.2 & 0.5 & 0.1
\end{array}, \quad \begin{gathered}
y \\
\hline
\end{gathered} \quad \begin{array}{ccccc}
-8 & -2 & 0 & 3 & 7 \\
\hline P(Y=y) & 0.2 & 0.3 & 0.1 & 0.3 \\
0.1
\end{array}
$$

(a) Find the expected value for X.
(b) Find the expected value for Y.
2. A fair coin is tossed 6 times. Let X be the number of heads that appear in the 6 tosses.
(a) Write the probability distribution for X.
(b) What is the expected number of heads in 6 tosses?
3. Let X and Y be a continuous random variables with probability density functions

$$
f(x)=\left\{\begin{array}{ll}
\frac{1}{10}\left(3 x^{2}+1\right) & 0 \leq x \leq 2 \\
0 & \text { otherwise }
\end{array}, \quad p(y)= \begin{cases}\frac{1}{100} & 0 \leq y \leq 100 \\
0 & \text { otherwise }\end{cases}\right.
$$

Find $E(X)$ and $E(Y)$.
4. The lifetime (in years) of a certain machine component is a random variable with probability density function

$$
f(x)= \begin{cases}4(1-x)^{3} & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

What is the expected lifetime of this component?
5. You arrive at a bus stop at 10:00 AM knowing that the bus will arrive some time between 10:00 AM and 10:30 AM with equal likelihood. What is your expected wait time in minutes?
6. A pair of fair 6 -sided dice are tossed. Let X be the maximum of the two numbers and Y the sum of the two numbers.

(a) Find $E(X)$ and $E(Y)$.
(b) Write the probability distribution for Z where $Z=X+Y$.
(c) Verify that $E(Z)=E(X)+E(Y)$.

