MATH1550, Winter 2023 Names:
Seminar 7

1. The joint probability distribution for discrete random variables X and Y is given in the table below.
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(a) Verify that this is a valid joint probability distribution.
(b) Find P(Y =0, X < 1).
(¢) Find the marginal distributions for X and Y.
(d) Find the conditional probability distributions P(X = z|Y = 0) and P(Y = y|X =1).
(e) Find the conditional probabilities

i P(X=1Y =0)

i, P(X =2|Y =1)

ii. P(Y =1|X = 1)

iv. P(Y =0|X =2).
(f) Are X and Y independent?

Y
Y

Solution.
(a) We see that all probabilities are nonnegative, and that the sum of all entries in the table is 1:

toroto11.1 4.6 3 3 4 4 2
6 4 8 8 6 6 24 24 24 24 24 24 24

Therefore this is a valid joint probability distribution for X and Y.

(b)
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(¢) The marginal distribution g(z) for X is obtained by summing the joint distribution over all Y
values, in this case the column sums. This yields
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1 1 7
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Similarly the marginal distribution h(y) for Y is obtained by summing the joint distribution over
all X wvalues, in this case the row sums. Thus
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(d) Using the marginal distribution h(y) for Y we have
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Using the marginal distribution g(x) for X we have
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(e) Find the conditional probabilities
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(f) By definition X and Y are independent when P(X = z,Y = y) = g(z)h(y). We see that this

fails, for example

mx:ayzm:é¢£~£=mmwn

and thus X and Y are dependent.

O

2. A bag contains 40 blue marbles and 60 red marbles. Suppose 10 marbles are drawn from the bag
without replacement. Let X be the number of blue marbles drawn, and Y the number of red marbles
drawn.

Give the joint probability distribution for X and Y.

(a)
(b)
(c¢) Find the conditional probability distributions P(Y = y|X = 0) and P(X = z|Y = 3).
(d) Are X and Y independent?

Find the marginal distributions for X and Y.

Solution. (a)
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0 else



(b) The marginal distribution for X is simply the probability distribution for X, which is

() (o%s)

€{0,...,10}
9(z) = (%)
0 else
Similarly the marginal distribution for Y is
(60)( 40 )
y/ \10—y
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O G R
0 else

(¢) Note that X = 0 implies Y = 10, otherwise f(z,y) =0, so

£(0,10) 40) 60 100
PY =10[X =0) = = (010210) ' 4(0106)0 = % =1
10
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and hence
1 =10
PY =ylx=0)=4 7
0 else
Similarly Y = 3 implies X =7 so

1 =7

PX =y =3) = {O else

(d) Note that

6 G O oo

100 100 100

(40) (o) (o)

which demonstrates that X and Y are not independent. Clearly the probability of X depends on
the value for Y and vice versa.

f(10,0) =

O
3. Let X and Y be joint continuous random variables with joint probability density function given below.

z+Cy? 0<2<1,0<y<1
flx,y) =
0 else

(a) Determine an appropriate value for C' € R (if one exists).
(b) Find PO< X < 3,5 <Y <1).

)
)
(¢) Find the joint cumulative distribution function F'(x,y) for X and Y.
(d) Find the marginal distributions for X and Y.
(e) Find the conditional probability distributions P(Y = y|X = 0) and P(X = z|Y = 0.5).
(f) Are X and Y independent?



Solution. (a) Solve
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Thus

(b)
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(¢) For x < 0 or y < 0 we have F(z,y) = 0.

F(x,y):/_;/_:f(&t)dtds:/_;/y 0dtds=0.
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For0 <z <1,0<y <1 we have

For z > 1,0 <y <1 we have

F(z,y)
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Fory > 1,0 <z <1 we have

F(z,y) = /_ﬂ; /_: f(s,t) dt ds

For z > 1, y > 1 we have

z Yy 1 1 3t2
—00 J —00 0 0



In summary
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(d) Marginal distribution for X: For 0 <z <1,
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and g(x) = 0 otherwise. Marginal distribution for Y: For 0 <y <1,
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and h(y) = 0 otherwise.
(e) For0 <y <1,

3
Py =yx =0y =100 _ 5 g
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9(0) 3
thus
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0 else
For 0 <z <1,
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thus
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0 else

(f) Note that for 0 <2 <1 and 0 <y <1 we have

3y2
f(z,y) :334‘7

whereas
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We can see that f(x,y) # g(z)h(y) forall 0 <z < 1and 0 <y <1, for example

3

F0,1) = 5 #1=g(0)h(1).

Therefore X and Y are dependent.



