1. The joint probability distribution for discrete random variables X and Y is given in the table below.

	x		
	0	1	2
0	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{8}$
$\begin{array}{rr} & \\ & 1\end{array}$	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{6}$

(a) Verify that this is a valid joint probability distribution.
(b) Find $P(Y=0, X \leq 1)$.
(c) Find the marginal distributions for X and Y.
(d) Find the conditional probability distributions $P(X=x \mid Y=0)$ and $P(Y=y \mid X=1)$.
(e) Find the conditional probabilities
i. $P(X=1 \mid Y=0)$
ii. $P(X=2 \mid Y=1)$
iii. $P(Y=1 \mid X=1)$
iv. $P(Y=0 \mid X=2)$.
(f) Are X and Y independent?

Solution.

(a) We see that all probabilities are nonnegative, and that the sum of all entries in the table is 1:

$$
\frac{1}{6}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{6}+\frac{1}{6}=\frac{4}{24}+\frac{6}{24}+\frac{3}{24}+\frac{3}{24}+\frac{4}{24}+\frac{4}{24}=\frac{24}{24}=1
$$

Therefore this is a valid joint probability distribution for X and Y.
(b)

$$
P(Y=0, X \leq 1)=P(X=0, Y=0)+P(X=1, Y=0)=\frac{1}{6}+\frac{1}{4}=\frac{5}{12}
$$

(c) The marginal distribution $g(x)$ for X is obtained by summing the joint distribution over all Y values, in this case the column sums. This yields

$$
g(x)= \begin{cases}\frac{1}{6}+\frac{1}{8}=\frac{7}{24} & x=0 \\ \frac{1}{4}+\frac{1}{6}=\frac{5}{12} & x=1 \\ \frac{1}{8}+\frac{1}{6}=\frac{7}{24} & x=2\end{cases}
$$

Similarly the marginal distribution $h(y)$ for Y is obtained by summing the joint distribution over all X values, in this case the row sums. Thus

$$
h(y)= \begin{cases}\frac{1}{6}+\frac{1}{4}+\frac{1}{8}=\frac{13}{24} & y=0 \\ \frac{1}{8}+\frac{1}{6}+\frac{1}{6}=\frac{11}{24} & y=1\end{cases}
$$

(d) Using the marginal distribution $h(y)$ for Y we have

$$
P(X=x \mid Y=0)=\frac{P(X=x, Y=0)}{h(0)}= \begin{cases}\frac{\frac{1}{6}}{\frac{13}{24}}=\frac{4}{13} & x=0 \\ \frac{\frac{4}{4}}{\frac{13}{24}}=\frac{6}{13} & x=1 \\ \frac{\frac{1}{8}}{\frac{13}{24}}=\frac{3}{13} & x=2\end{cases}
$$

Using the marginal distribution $g(x)$ for X we have

$$
P(Y=y \mid X=1)=\frac{P(Y=y, X=1)}{g(1)}= \begin{cases}\frac{\frac{1}{4}}{\frac{5}{12}}=\frac{3}{5} & y=0 \\ \frac{\frac{1}{6}}{\frac{5}{12}}=\frac{2}{5} & y=1\end{cases}
$$

(e) Find the conditional probabilities
i.

$$
P(X=1 \mid Y=0)=\frac{4}{13}
$$

ii.

$$
P(X=2 \mid Y=1)=\frac{P(X=2, Y=1)}{h(1)}=\frac{\frac{1}{6}}{\frac{11}{24}}=\frac{4}{11}
$$

iii.

$$
P(Y=1 \mid X=1)=\frac{2}{5}
$$

iv.

$$
P(Y=0 \mid X=2)=\frac{P(X=2, Y=0)}{g(2)}=\frac{\frac{1}{8}}{\frac{7}{24}}=\frac{3}{7}
$$

(f) By definition X and Y are independent when $P(X=x, Y=y)=g(x) h(y)$. We see that this fails, for example

$$
P(X=0, Y=0)=\frac{1}{6} \neq \frac{7}{24} \cdot \frac{13}{24}=g(0) h(0)
$$

and thus X and Y are dependent.
2. A bag contains 40 blue marbles and 60 red marbles. Suppose 10 marbles are drawn from the bag without replacement. Let X be the number of blue marbles drawn, and Y the number of red marbles drawn.
(a) Give the joint probability distribution for X and Y.
(b) Find the marginal distributions for X and Y.
(c) Find the conditional probability distributions $P(Y=y \mid X=0)$ and $P(X=x \mid Y=3)$.
(d) Are X and Y independent?

Solution. (a)

$$
f(x, y)=P(X=x, Y=y)=\left\{\begin{array}{cl}
\frac{\binom{40}{x}\binom{60}{y}}{\binom{100}{10}} & x+y=10, x, y \in\{0, \ldots, 10\} \\
0 & \text { else }
\end{array}\right.
$$

(b) The marginal distribution for X is simply the probability distribution for X, which is

$$
g(x)=\left\{\begin{array}{cl}
\frac{\binom{40}{x}\binom{60}{10-x}}{\binom{100}{10}} & x \in\{0, \ldots, 10\} \\
0 & \text { else }
\end{array}\right.
$$

Similarly the marginal distribution for Y is

$$
h(y)=\left\{\begin{array}{cl}
\frac{\binom{60}{y}\binom{40}{10-y}}{\binom{100}{10}} & y \in\{0, \ldots, 10\} \\
0 & \text { else }
\end{array}\right.
$$

(c) Note that $X=0$ implies $Y=10$, otherwise $f(x, y)=0$, so

$$
P(Y=10 \mid X=0)=\frac{f(0,10)}{g(0)}=\frac{\binom{40}{0}\binom{60}{10}}{\binom{100}{10}} \cdot \frac{\binom{100}{10}}{\binom{40}{0}\binom{60}{10}}=\frac{\binom{60}{10}}{\binom{60}{10}}=1
$$

and hence

$$
P(Y=y \mid X=0)= \begin{cases}1 & y=10 \\ 0 & \text { else }\end{cases}
$$

Similarly $Y=3$ implies $X=7$ so

$$
P(X=x \mid Y=3)= \begin{cases}1 & x=7 \\ 0 & \text { else }\end{cases}
$$

(d) Note that

$$
f(10,0)=\frac{\binom{40}{10}\binom{60}{0}}{\binom{100}{10}} \neq \frac{\binom{40}{10}\binom{60}{0}}{\binom{100}{10}} \frac{\binom{60}{0}\binom{40}{10}}{\binom{100}{10}}=g(10) h(0)
$$

which demonstrates that X and Y are not independent. Clearly the probability of X depends on the value for Y and vice versa.
3. Let X and Y be joint continuous random variables with joint probability density function given below.

$$
f(x, y)= \begin{cases}x+C y^{2} & 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { else }\end{cases}
$$

(a) Determine an appropriate value for $C \in \mathbb{R}$ (if one exists).
(b) Find $P\left(0 \leq X \leq \frac{1}{2}, \frac{1}{2} \leq Y \leq 1\right)$.
(c) Find the joint cumulative distribution function $F(x, y)$ for X and Y.
(d) Find the marginal distributions for X and Y.
(e) Find the conditional probability distributions $P(Y=y \mid X=0)$ and $P(X=x \mid Y=0.5)$.
(f) Are X and Y independent?

Solution. (a) Solve

$$
\begin{aligned}
1 & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y \\
& =\int_{0}^{1} \int_{0}^{1} x+C y^{2} d x d y \\
& =\int_{0}^{1} \frac{x^{2}}{2}+\left.C x y^{2}\right|_{0} ^{1} d y \\
& =\int_{0}^{1} \frac{1}{2}+C y^{2} d y \\
& =\frac{y}{2}+\left.C \frac{y^{3}}{3}\right|_{0} ^{1} \\
& =\frac{1}{2}+\frac{C}{3}
\end{aligned}
$$

Thus

$$
1=\frac{1}{2}+\frac{C}{3} \quad \Rightarrow \quad \frac{C}{3}=\frac{1}{2} \quad \Rightarrow \quad C=\frac{3}{2}
$$

Note also that $f(x, y) \geq 0$ for this value for C.
(b)

$$
\begin{aligned}
P\left(0 \leq X \leq \frac{1}{2}, \frac{1}{2} \leq Y \leq 1\right) & =\int_{0}^{\frac{1}{2}} \int_{\frac{1}{2}}^{1} x+\frac{3 y^{2}}{2} d y d x \\
& =\int_{0}^{\frac{1}{2}} x y+\left.\frac{y^{3}}{2}\right|_{\frac{1}{2}} ^{1} d x \\
& =\int_{0}^{\frac{1}{2}} \frac{x}{2}+\frac{7}{16} d x \\
& =\frac{x^{2}}{4}+\left.\frac{7 x}{16}\right|_{0} ^{\frac{1}{2}} \\
& =\frac{1}{16}+\frac{7}{32} \\
& =\frac{9}{32} \\
& =0.28125
\end{aligned}
$$

(c) For $x<0$ or $y<0$ we have $F(x, y)=0$.

$$
F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(s, t) d t d s=\int_{-\infty}^{x} \int_{-\infty}^{y} 0 d t d s=0
$$

For $0 \leq x \leq 1,0 \leq y \leq 1$ we have

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{x} \int_{-\infty}^{y} f(s, t) d t d s \\
& =\int_{0}^{x} \int_{0}^{y} s+\frac{3 t^{2}}{2} d t d s \\
& =\int_{0}^{x} s t+\left.\frac{t^{3}}{2}\right|_{0} ^{y} d s \\
& =\int_{0}^{x} s y+\frac{y^{3}}{2} d s \\
& =\frac{s^{2} y}{2}+\left.\frac{s y^{3}}{2}\right|_{0} ^{x} \\
& =\frac{x^{2} y}{2}+\frac{x y^{3}}{2} .
\end{aligned}
$$

For $x>1,0 \leq y \leq 1$ we have

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{x} \int_{-\infty}^{y} f(s, t) d t d s \\
& =\int_{0}^{1} \int_{0}^{y} s+\frac{3 t^{2}}{2} d t d s \\
& =\int_{0}^{1} s t+\left.\frac{t^{3}}{2}\right|_{0} ^{y} d s \\
& =\int_{0}^{1} s y+\frac{y^{3}}{2} d s \\
& =\frac{s^{2} y}{2}+\left.\frac{s y^{3}}{2}\right|_{0} ^{1} \\
& =\frac{y}{2}+\frac{y^{3}}{2}
\end{aligned}
$$

For $y>1,0 \leq x \leq 1$ we have

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{x} \int_{-\infty}^{y} f(s, t) d t d s \\
& =\int_{0}^{x} \int_{0}^{1} s+\frac{3 t^{2}}{2} d t d s \\
& =\int_{0}^{x} s t+\left.\frac{t^{3}}{2}\right|_{0} ^{1} d s \\
& =\int_{0}^{x} s+\frac{1}{2} d s \\
& =\frac{s^{2}}{2}+\left.\frac{s}{2}\right|_{0} ^{x} \\
& =\frac{x^{2}}{2}+\frac{x}{2}
\end{aligned}
$$

For $x>1, y>1$ we have

$$
F(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f(s, t) d t d s=\int_{0}^{1} \int_{0}^{1} s+\frac{3 t^{2}}{2} d t d s=1
$$

In summary

$$
F(x, y)=\left\{\begin{array}{cl}
0 & x<0 \text { or } y<0 \\
\frac{x^{2} y}{2}+\frac{x y^{3}}{2} & 0 \leq x \leq 1,0 \leq y \leq 1 \\
\frac{y}{2}+\frac{y^{3}}{2} & x>1,0 \leq y \leq 1 \\
\frac{x^{2}}{2}+\frac{x}{2} & y>1,0 \leq x \leq 1 \\
1 & x>1, y>1
\end{array}\right.
$$

(d) Marginal distribution for X : For $0 \leq x \leq 1$,

$$
\begin{aligned}
g(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{0}^{1} x+\frac{3 y^{2}}{2} d y \\
& =x y+\left.\frac{y^{3}}{2}\right|_{0} ^{1} \\
& =x+\frac{1}{2}
\end{aligned}
$$

and $g(x)=0$ otherwise. Marginal distribution for Y : For $0 \leq y \leq 1$,

$$
\begin{aligned}
h(y) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{1} x+\frac{3 y^{2}}{2} d x \\
& =\frac{x^{2}}{2}+\left.\frac{3 x y^{2}}{2}\right|_{0} ^{1} \\
& =\frac{1}{2}+\frac{3 y^{2}}{2}
\end{aligned}
$$

and $h(y)=0$ otherwise.
(e) For $0 \leq y \leq 1$,

$$
P(Y=y \mid X=0)=\frac{f(0, y)}{g(0)}=\frac{\frac{3 y^{2}}{2}}{\frac{1}{2}}=3 y^{2}
$$

thus

$$
P(Y=y \mid X=0)= \begin{cases}3 y^{2} & 0 \leq y \leq 1 \\ 0 & \text { else }\end{cases}
$$

For $0 \leq x \leq 1$,

$$
P(X=x \mid Y=0.5)=\frac{f(x, 0.5)}{h(0.5)}=\frac{x+\frac{3}{8}}{\frac{7}{8}}=\frac{8 x+3}{7}
$$

thus

$$
P(X=x \mid Y=0.5)= \begin{cases}\frac{8 x+3}{7} & 0 \leq x \leq 1 \\ 0 & \text { else }\end{cases}
$$

(f) Note that for $0 \leq x \leq 1$ and $0 \leq y \leq 1$ we have

$$
f(x, y)=x+\frac{3 y^{2}}{2}
$$

whereas

$$
g(x) h(y)=\left(x+\frac{1}{2}\right)\left(\frac{1}{2}+\frac{3 y^{2}}{2}\right)=\frac{x}{2}+\frac{3 x y^{2}}{2}+\frac{1}{4}+\frac{3 y^{2}}{4}
$$

We can see that $f(x, y) \neq g(x) h(y)$ for all $0 \leq x \leq 1$ and $0 \leq y \leq 1$, for example

$$
f(0,1)=\frac{3}{2} \neq 1=g(0) h(1)
$$

Therefore X and Y are dependent.

