1. The joint probability distribution for discrete random variables X and Y is given in the table below.

	x		
	0	1	2
0	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{8}$
$\begin{array}{rr} & \\ & 1\end{array}$	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{6}$

(a) Verify that this is a valid joint probability distribution.
(b) Find $P(Y=0, X \leq 1)$.
(c) Find the marginal distributions for X and Y.
(d) Find the conditional probability distributions $P(X=x \mid Y=0)$ and $P(Y=y \mid X=1)$.
(e) Find the conditional probabilities
i. $P(X=1 \mid Y=0)$
ii. $P(X=2 \mid Y=1)$
iii. $P(Y=1 \mid X=1)$
iv. $P(Y=0 \mid X=2)$.
(f) Are X and Y independent?
2. A bag contains 40 blue marbles and 60 red marbles Suppose 10 marbles are drawn from the bag without replacement. Let X be the number of blue marbles drawn, and Y the number of red marbles drawn.
(a) Give the joint probability distribution for X and Y.
(b) Find the marginal distributions for X and Y.
(c) Find the conditional probability distributions $P(Y=y \mid X=0)$ and $P(X=x \mid Y=3)$.
(d) Are X and Y independent?
3. Let X and Y be joint continuous random variables with joint probability density function given below.

$$
f(x, y)= \begin{cases}x+C y^{2} & -\leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { else }\end{cases}
$$

(a) Determine an appropriate value for $C \in \mathbb{R}$ (if one exists).
(b) Find $P\left(0 \leq X \leq \frac{1}{2}, \frac{1}{2} \leq Y \leq 1\right)$.
(c) Find the joint cumulative distribution function $F(x, y)$ for X and Y.
(d) Find the marginal distributions for X and Y.
(e) Find the conditional probability distributions $P(Y=y \mid X=0)$ and $P(X=x \mid Y=0.5)$.
(f) Are X and Y independent?

