1. Find the cumulative distribution function $F(x)$ for each probability density function $f(x)$.
(a)

$$
f(x)= \begin{cases}\frac{3}{8}\left(4 x-2 x^{2}\right) & \text { for } x \in[0,2] \\ 0 & \text { else }\end{cases}
$$

(b)

$$
f(x)= \begin{cases}\frac{10}{x^{2}} & \text { for } x>10 \\ 0 & \text { else }\end{cases}
$$

(c)

$$
f(x)= \begin{cases}10\left(x^{3}-x^{4}\right) & \text { for } x \in[0,1] \\ \frac{4}{3 x^{3}} & \text { for } x \in(1,2] \\ 0 & \text { else }\end{cases}
$$

Solution. (a) For $x<0$

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{x} 0 d t=0
$$

For $0 \leq x \leq 2$

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{0} 0 d t+\int_{0}^{x} \frac{3}{8}\left(4 t-2 t^{2}\right) d t=\left.\frac{3}{8}\left(2 t^{2}-\frac{2 t^{3}}{3}\right)\right|_{0} ^{x}=\frac{3 x^{2}}{4}-\frac{x^{3}}{4}
$$

For $x \geq 2$

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{0} 0 d t+\int_{0}^{2} \frac{3}{8}\left(4 t-2 t^{2}\right) d t+\int_{2}^{x} 0 d t=\left.\frac{3}{8}\left(2 t^{2}-\frac{2 t^{3}}{3}\right)\right|_{0} ^{2}=1
$$

Thus

$$
F(x)= \begin{cases}0 & \text { for } x<0 \\ \frac{3 x^{2}}{4}-\frac{x^{3}}{4} & \text { for } 0 \leq x<2 \\ 1 & \text { for } x \geq 2\end{cases}
$$

(b) For $x \leq 10$

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{x} 0 d t=0
$$

For $x>10$

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{10} 0 d t+\int_{10}^{x} \frac{10}{t^{2}} d t=-\left.\frac{10}{t}\right|_{10} ^{x}=1-\frac{10}{x}
$$

Thus

$$
F(x)= \begin{cases}0 & \text { for } x \leq 10 \\ 1-\frac{10}{x} & \text { for } x>10\end{cases}
$$

(c) For $x<0$

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{x} 0 d t=0
$$

For $0 \leq x \leq 1$

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{0} 0 d t+\int_{0}^{x} 10\left(t^{3}-t^{4}\right) d t=\frac{5 t^{4}}{2}-\left.2 t^{5}\right|_{0} ^{x}=\frac{5 x^{4}}{2}-2 x^{5}
$$

For $1<x \leq 2$
$F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{1} f(t) d t+\int_{1}^{x} \frac{4}{3 t^{3}} d t=F(1)+\left[-\frac{2}{3 t^{2}}\right]_{1}^{x}=\frac{1}{2}+\left(\frac{2}{3}-\frac{2}{3 x^{2}}\right)=\frac{7}{6}-\frac{2}{3 x^{2}}$.
For $x>2$

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{2} f(t) d t+\int_{2}^{x} 0 d t=F(2)=1
$$

Thus

$$
F(x)= \begin{cases}0 & \text { for } x<0 \\ \frac{5 x^{4}}{2}-2 x^{5} & \text { for } 0 \leq x<1 \\ \frac{7}{6}-\frac{2}{3 x^{2}} & \text { for } 1 \leq x<2 \\ 1 & \text { for } x \geq 2\end{cases}
$$

2. The cumulative distribution function $F(x)$ for a continuous random variable X is given. Find the probability density $f(x)$ for X.
(a)

$$
F(x)= \begin{cases}0 & \text { for } x<0 \\ x^{2} & \text { for } 0 \leq x<1 \\ 1 & \text { for } x \geq 1\end{cases}
$$

(b)

$$
F(x)= \begin{cases}0 & \text { for } x<0 \\ \frac{x^{2}}{2} & \text { for } 0 \leq x \leq 1 \\ 2 x-\frac{x^{2}}{2}-1 & \text { for } 1<x \leq 2 \\ 1 & \text { for } x>2\end{cases}
$$

(c)

$$
F(x)= \begin{cases}1-e^{-x} & \text { for } x \geq 0 \\ 0 & \text { else }\end{cases}
$$

Solution. To find $f(x)$ take $\frac{d}{d x} F(x)$.
(a)

$$
f(x)= \begin{cases}2 x & \text { for } 0 \leq x<1 \\ 0 & \text { else }\end{cases}
$$

(b)

$$
f(x)= \begin{cases}x & \text { for } 0 \leq x \leq 1 \\ 2-x & \text { for } 1<x \leq 2 \\ 0 & \text { else }\end{cases}
$$

(c)

$$
f(x)= \begin{cases}e^{-x} & \text { for } x \geq 0 \\ 0 & \text { else }\end{cases}
$$

3. A fair coin is tossed 4 times. You win $\$ 3$ if 2 or 4 heads appear, you win $\$ 1$ if 1 or 3 heads appear and you lose $\$ 6$ if if no heads appear. Let X be the number of heads, and Y the number of dollars won, after 4 tosses. Give the joint probability distribution $f(x, y)$, for X and Y.

4. Two fair 6 -sided dice are thrown. Let X be the largest value appearing on either die, and Y be value appearing on the first die. Give the joint probability distribution $f(x, y)$, for X and Y.

5. A fair coin is tossed three times. Let X be the number of heads that appear, and Y the toss $(1,2$ or 3$)$ where heads first appears, or $Y=0$ if heads dose not appear. Give the joint probability distribution $f(x, y)$, for X and Y.

6. The joint probability distribution for discrete random variables X and Y is given in the table below.

(a) Determine an appropriate value for $k \in \mathbb{R}$.
(b) Find $P(X=1, Y=4)$.
(c) Find $P(X \leq 2.25, Y \leq 3)$.
(d) Find $P(X \leq 2.6, Y>1)$.

Solution. (a) In order that all probabilities sum to 1 , we must have $k=\frac{1}{12}$
(b)

$$
P(X=1, Y=4)=\frac{1}{6}
$$

(c)

$$
P(X \leq 2.25, Y \leq 3)=P(1,0)+P(2,0)+P(1,2)+P(2,2)=\frac{1}{8}+\frac{1}{12}+\frac{1}{8}+\frac{1}{24}=\frac{3}{8}
$$

(d)

$$
P(X \leq 2.6, Y>1)=P(1,2)+P(2,2)+P(1,4)+P(2,4)=\frac{1}{8}+\frac{1}{24}+\frac{1}{6}+\frac{1}{12}=\frac{5}{12}
$$

