1. Find the cumulative distribution function $F(x)$ for each probability density function $f(x)$.
(a)

$$
f(x)= \begin{cases}\frac{3}{8}\left(4 x-2 x^{2}\right) & \text { for } x \in[0,2] \\ 0 & \text { else }\end{cases}
$$

(b)

$$
f(x)= \begin{cases}\frac{10}{x^{2}} & \text { for } x>10 \\ 0 & \text { else }\end{cases}
$$

(c)

$$
f(x)= \begin{cases}10\left(x^{3}-x^{4}\right) & \text { for } x \in[0,1] \\ \frac{4}{3 x^{3}} & \text { for } x \in(1,2] \\ 0 & \text { else }\end{cases}
$$

2. The cumulative distribution function $F(x)$ for a continuous random variable X is given. Find the probability density $f(x)$ for X.
(a)

$$
F(x)= \begin{cases}0 & \text { for } x<0 \\ x^{2} & \text { for } 0 \leq x<1 \\ 1 & \text { for } x \geq 1\end{cases}
$$

(b)

$$
F(x)= \begin{cases}0 & \text { for } x<0 \\ \frac{x^{2}}{2} & \text { for } 0 \leq x \leq 1 \\ 2 x-\frac{x^{2}}{2}-1 & \text { for } 1<x \leq 2 \\ 1 & \text { for } x>2\end{cases}
$$

(c)

$$
F(x)= \begin{cases}1-e^{-x} & \text { for } x \geq 0 \\ 0 & \text { else }\end{cases}
$$

3. A fair coin is tossed 4 times. You win $\$ 3$ if 2 or 4 heads appear, you win $\$ 1$ if 1 or 3 heads appear and you lose $\$ 6$ if if no heads appear. Let X be the number of heads, and Y the number of dollars won, after 4 tosses. Give the joint probability distribution $f(x, y)$, for X and Y.
4. Two fair 6 -sided dice are thrown. Let X be the largest value appearing on either die, and Y be value appearing on the first die. Give the joint probability distribution $f(x, y)$, for X and Y.
5. A fair coin is tossed three times. Let X be the number of heads that appear, and Y the toss $(1,2$ or 3$)$ where heads first appears, or $Y=0$ if heads dose not appear. Give the joint probability distribution $f(x, y)$, for X and Y.
6. The joint probability distribution for discrete random variables X and Y is given in the table below.

(a) Determine an appropriate value for $k \in \mathbb{R}$.
(b) Find $P(X=1, Y=4)$.
(c) Find $P(X \leq 2.25, Y \leq 3)$.
(d) Find $P(X \leq 2.6, Y>1)$.
