1. A continuous random variable X is said to have uniform density (or equiprobable density) if its probability density function is constant on some region and zero elsewhere; for example if $C \in \mathbb{R}$, then

$$
f(x)= \begin{cases}C & \text { for } x \in[a, b] \\ 0 & \text { else }\end{cases}
$$

is such a function. The set $[a, b]$, where f is nonzero, is called the support of f. This type of probability density function models the situation of having an equally likely chance of choosing a number at random from the interval $[a, b]$.
(a) Let X be a number chosen at random from the interval $[3,15]$. Give the probability density function for X assuming it has uniform density.
(b) Use the probability density function from part (a) to compute:
i. $P(7 \leq X \leq 10)$
ii. $(X<10)$
iii. $P(0 \leq X \leq 20)$
iv. $P(1 \leq X<4)$
v. $P\left(X^{2}-2 X-9<0\right)$
(c) What must the value for C be for the uniform density function f with support $[a, b]$?
(d) In this case, give a formula for finding $P(c \leq X \leq d)$ where $a \leq c \leq d \leq b$.

Solution. (a) We have

$$
f(x)= \begin{cases}C & \text { for } x \in[3,15] \\ 0 & \text { else }\end{cases}
$$

We require that

$$
1=\int_{-\infty}^{\infty} f(x) d x=\int_{3}^{15} C d x=\left.C x\right|_{3} ^{15}=15 C-3 C=12 C
$$

which implies $C=\frac{1}{12}$. Thus

$$
f(x)= \begin{cases}\frac{1}{12} & \text { for } x \in[3,15] \\ 0 & \text { else }\end{cases}
$$

(b) i.

$$
P(7 \leq X \leq 10)=\int_{7}^{10} \frac{1}{12} d x=\left.\frac{x}{12}\right|_{7} ^{10}=\frac{10-7}{12}=\frac{5}{12}
$$

ii.

$$
P(X<10)=\int_{-\infty}^{10} f(x) d x=\int_{-\infty}^{3} 0 d x+\int_{3}^{10} \frac{1}{12} d x=0+\left.\frac{x}{12}\right|_{3} ^{10}=\frac{7}{12}
$$

iii.

$$
P(0 \leq X \leq 20)=\int_{0}^{3} 0 d x+\int_{3}^{15} \frac{1}{12} d x+\int_{15}^{20} 0 d x=0+\left.\frac{x}{12}\right|_{3} ^{15}+0=\frac{12}{12}=1
$$

iv.

$$
P(1 \leq X<4)=\int_{1}^{3} 0 d x+\int_{3}^{4} \frac{1}{12} d x=0+\left.\frac{x}{12}\right|_{3} ^{4}=\frac{1}{12}
$$

v.

$$
\begin{aligned}
P\left(X^{2}-2 X-8<0\right) & =P\left((X-1)^{2}-9<0\right) \quad \text { (complete the square) } \\
& =P\left((X-1)^{2}<9\right) \\
& =P(-3<X-1<3) \\
& =P(-2<X<4) \\
& =\int_{3}^{4} \frac{1}{12} d x \\
& =\frac{1}{12}
\end{aligned}
$$

(c) Since

$$
1=\int_{-\infty}^{\infty} f(x) d x=\int_{a}^{b} C d x=\left.C x\right|_{a} ^{b}=C(b-a)
$$

we see that

$$
C=\frac{1}{b-a}
$$

(assuming $a<b$).
(d) Based on the previous examples it is easy to see that

$$
P(c \leq X \leq d)=\frac{d-c}{b-a}
$$

of course we can derive this as

$$
P(c \leq X \leq d)=\int_{c}^{d} \frac{1}{b-a} d x=\left.\frac{x}{b-a}\right|_{c} ^{d}=\frac{d-c}{b-a}
$$

2. Let X be a continuous random variable with probability density function

$$
f(x)= \begin{cases}\frac{C}{x^{3}} & \text { for } x \in[a, b] \\ 0 & \text { else }\end{cases}
$$

where $C \in \mathbb{R}$ and $a<b$.
(a) Find an appropriate value for C if $a=1$ and $b=2$.
(b) Find an appropriate value for C for arbitrary a and b with $0<a<b$.

Solution. (a) We require that

$$
1=\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{1} \frac{C}{x^{3}} d x=-\left.\frac{C}{2 x^{2}}\right|_{0} ^{1}=-\frac{C}{8}+\frac{C}{2}=\frac{-C+4 C}{8}=\frac{3 C}{8}
$$

which implies

$$
C=\frac{8}{3}
$$

(b) We require that

$$
1=\int_{-\infty}^{\infty} f(x) d x=\int_{a}^{b} \frac{C}{x^{3}} d x=-\left.\frac{C}{2 x^{2}}\right|_{a} ^{b}=\frac{C}{2 a^{2}}-\frac{C}{2 b^{2}}=\frac{C\left(b^{2}-a^{2}\right)}{2 a^{2} b^{2}}
$$

which implies

$$
C=\frac{2 a^{2} b^{2}}{b^{2}-a^{2}}
$$

3. Let X be a continuous random variable with probability density function

$$
f(x)= \begin{cases}C\left(4 x-2 x^{2}\right) & \text { for } x \in[0,2] \\ 0 & \text { else }\end{cases}
$$

(a) Show that $C=\frac{3}{8}$.
(b) Compute $P(X>1)$.

Solution. (a) We have that

$$
1=\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{2} C\left(4 x-2 x^{2}\right) d x=C\left[2 x^{2}-\frac{2 x^{3}}{3}\right]_{0}^{2}=\frac{8}{3} C
$$

which implies $C=\frac{3}{8}$.
(b)

$$
P(X>1)=\int_{1}^{\infty} f(x) d x=\int_{1}^{2} \frac{3}{8}\left(4 x-2 x^{2}\right) d x=\frac{3}{8}\left[2 x^{2}-\frac{2 x^{3}}{3}\right]_{1}^{2}=\frac{3}{8}\left[\frac{8}{3}-\frac{4}{3}\right]=\frac{1}{2}
$$

4. The lifetime (in years) of a certain machine component is a random variable with probability density function

$$
f(x)= \begin{cases}\frac{10}{x^{2}} & \text { for } x>10 \\ 0 & \text { else }\end{cases}
$$

(a) What is the probability that such a component will last more than 20 years?.
(b) A machine contains 6 such components. The lifetime of any component is unaffected by the others. What is the probability that exactly 4 of them last over 15 years? Hint: Let A_{i} be the event that component i will last more then 15 years, and assume that events $A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}$ are independent.

Solution. (a)

$$
P(X>20)=\int_{20}^{\infty} \frac{10}{x^{2}} d x=\lim _{n \rightarrow \infty}-\left.\frac{10}{x}\right|_{20} ^{n}=\lim _{n \rightarrow \infty}-\frac{10}{n}-\left(-\frac{10}{20}\right)=\frac{1}{2}
$$

(b) The probability that component i will last more that 15 years is

$$
P\left(A_{i}\right)=\int_{15}^{\infty} \frac{10}{x^{2}} d x=\lim _{n \rightarrow \infty}-\left.\frac{10}{x}\right|_{15} ^{n}=\lim _{n \rightarrow \infty}-\frac{10}{n}-\left(-\frac{10}{15}\right)=\frac{2}{3}
$$

which means that the probability it fails before 15 years is

$$
P\left(A_{i}^{\prime}\right)=1-P\left(A_{i}\right)=\frac{1}{3}
$$

As an example, the probability that components $1,2,3$ and 4 last longer than 15 years, while components 5 and 6 fail before 15 years is

$$
\begin{aligned}
P\left(A_{1} \cap A_{2} \cap A_{3} \cap A_{4} \cap A_{5}^{\prime} \cap A_{6}^{\prime}\right) & =P\left(A_{1}\right) \cdot P\left(A_{2}\right) \cdot P\left(A_{3}\right) \cdot P\left(A_{4}\right) \cdot P\left(A_{5}^{\prime}\right) \cdot P\left(A_{6}^{\prime}\right) \\
& =\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{2} \\
& =\frac{16}{729},
\end{aligned}
$$

using that fact that these events are independent. It follows that the probability that any 4 of 6 last more that 15 years, while the other 2 fail, is then

$$
\binom{6}{4}\left(\frac{2}{3}\right)^{4}\left(\frac{1}{3}\right)^{2}=\frac{80}{243}
$$

5. You arrive at a bus stop at 10:00 AM knowing that the bus will arrive some time between 10:00 AM and 10:30 AM with equal likelihood.
(a) What is the probability that you will have to wait longer than 10 minutes for the bus to arrive?
(b) If at 10:15 AM the bus has not arrived, what is the probability that you will have to wait at least 10 more minutes?

Solution. (a) let X be the number of minutes after 10:00 AM until the bus arrives. The probability density function for X is

$$
f(x)= \begin{cases}\frac{1}{30} & \text { for } x \in[0,30] \\ 0 & \text { else }\end{cases}
$$

Then

$$
P(X>10)=\int_{10}^{30} \frac{1}{30} d x=\left.\frac{x}{30}\right|_{10} ^{30}=\frac{2}{3}
$$

or, using what we know about uniform probability densities,

$$
P(X>10)=P(10 \leq X \leq 30)=\frac{30-10}{30}=\frac{2}{3}
$$

(b) Let A be event that $X \geq 15$ and B the event that $X \geq 25$, then we are interested in

$$
P(B \mid A)=\frac{P(A \cap B)}{P(B)}=\frac{P(B)}{P(A)}=\frac{\frac{30-25}{30}}{\frac{30-15}{30}}=\frac{1}{3}
$$

6. Determine whether or not the following function may serve as a valid probability density function.

$$
f(x)= \begin{cases}\frac{4}{3}\left(2 x-x^{3}\right) & \text { for } \frac{1}{2} \leq x \leq \frac{3}{2} \\ 0 & \text { else }\end{cases}
$$

Solution. Note that

$$
f\left(\frac{3}{2}\right)=-\frac{1}{2}<0
$$

therefore $f(x)$ cannot serve as a valid probability density function. We see see however that

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{4}{3}\left(2 x-x^{3}\right) d x=\frac{4}{3}\left[x^{2}-\frac{x^{4}}{4}\right]_{\frac{1}{2}}^{\frac{3}{2}}=\frac{4}{3}\left[\frac{63}{64}-\frac{15}{64}\right]=1
$$

