1. Suppose X and Y are discrete random variables with joint probability distribution given below.

(a) Find $E(X)$ and $E(Y)$.
(b) Find $\operatorname{var}(X)$ and $\operatorname{var}(Y)$.
(c) Find $\operatorname{cov}(X, Y)$.
(d) The correlation between X and Y is defined as $\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var}(Y)}}, \operatorname{provided} \operatorname{var}(X), \operatorname{var}(Y) \neq$ 0 . It provides a measure of the degree of linearity between X and Y (this would appear in course on statistics). Find the correlation between X and Y.

Solution. (a)

$$
\begin{aligned}
& E(X)=\sum_{x} \sum_{y} x f(x, y)=1 \cdot(0.10+0.12+0.16)+2 \cdot(0.08+0.12+0.10)+3 \cdot(0.06+0.06+0.20)=1.94 \\
& E(Y)=\sum_{x} \sum_{y} y f(x, y)=1 \cdot(0.10+0.08+0.06)+2 \cdot(0.12+0.12+0.06)+3 \cdot(0.16+0.10+0.20)=2.22
\end{aligned}
$$

(b)

$$
\begin{gathered}
E\left(X^{2}\right)=\sum_{x} \sum_{y} x f(x, y)=1^{2} \cdot(0.10+0.12+0.16)+2^{2} \cdot(0.08+0.12+0.10)+3^{2} \cdot(0.06+0.06+0.20)=4.46 \\
\operatorname{var}(X)=E\left(X^{2}\right)-(E(X))^{2}=4.46-(1.94)^{2}=0.6964 \\
E\left(Y^{2}\right)=\sum_{x} \sum_{y} y f(x, y)=1^{2} \cdot(0.10+0.08+0.06)+2^{2} \cdot(0.12+0.12+0.06)+3^{2} \cdot(0.16+0.10+0.20)=5.58 \\
\operatorname{var}(Y)=E\left(Y^{2}\right)-(E(Y))^{2}=5.58-(2.22)^{2}=0.6516 .
\end{gathered}
$$

(c)

$$
\begin{aligned}
& E(X Y)= \sum_{x} \sum_{y} x y f(x, y) \\
&= 1 \cdot(0.10)+2 \cdot(0.08)+3 \cdot(0.06)+2 \cdot(0.12)+4 \cdot(0.12) \\
&+6 \cdot(0.06)+3 \cdot(0.16)+6 \cdot(0.10)+9 \cdot(0.20) \\
&= 4.4 \\
& \operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)=4.4-(1.94)(2.22)=0.0932 .
\end{aligned}
$$

(d)

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)} \sqrt{\operatorname{var}(Y)}}=\frac{0.0932}{\sqrt{0.6964} \sqrt{0.6516}} \approx 0.1384
$$

2. The joint density function for continuous random variables X and Y is given by

$$
f(x, y)= \begin{cases}\frac{1}{3}(x+y) & 0<x<1,0<y<2 \\ 0 & \text { otherwise }\end{cases}
$$

Find $\operatorname{cov}(X, Y)$. Are X and Y independent?
Solution.

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d x d y \\
& =\int_{0}^{2} \int_{0}^{1} \frac{x}{3}(x+y) d x d y \\
& =\int_{0}^{2} \frac{x^{3}}{9}+\left.\frac{x^{2} y}{6}\right|_{0} ^{1} d y \\
& =\int_{0}^{2} \frac{1}{9}+\frac{y}{6} d y \\
& =\frac{y}{9}+\left.\frac{y^{2}}{12}\right|_{0} ^{2} \\
& =\frac{5}{9} \\
E(Y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d x d y \\
& =\int_{0}^{2} \int_{0}^{1} \frac{y}{3}(x+y) d x d y \\
& =\int_{0}^{2} \frac{x^{2} y}{6}+\left.\frac{x y^{2}}{3}\right|_{0} ^{1} d y \\
& =\int_{0}^{2} \frac{y}{6}+\frac{y^{2}}{3} d y \\
& =\frac{y^{2}}{12}+\left.\frac{y^{3}}{9}\right|_{0} ^{2} \\
& =\frac{11}{9}
\end{aligned}
$$

$$
\begin{aligned}
E(X Y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y \\
& =\int_{0}^{2} \int_{0}^{1} \frac{x y}{3}(x+y) d x d y \\
& =\left.\int_{0}^{2} \frac{x^{3} y}{9} \frac{x^{2} y^{2}}{6}\right|_{0} ^{1} d y \\
& =\int_{0}^{2} \frac{y}{9} \frac{y^{2}}{6} d y \\
& =\left.\frac{y^{2}}{18} \frac{y^{3}}{18}\right|_{0} ^{2} \\
& =\frac{2}{3} \\
\operatorname{cov}(X, Y)=E(X Y) & -E(X) E(Y)=\frac{2}{3}-\left(\frac{5}{9}\right)\left(\frac{11}{9}\right)=-\frac{1}{81}
\end{aligned}
$$

Since $\operatorname{cov}(X, Y) \neq 0$, it follows that X and Y are not independent.
3. Let X be a continuous random variable with probability density given by

$$
f(x)= \begin{cases}1+x & -1<x \leq 0 \\ 1-x & 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Let $U=X$ and $V=X^{2}$. Show that $\operatorname{cov}(U, V)=0$.
Solution.

$$
\begin{aligned}
E(U) & =E(X)=\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{-1}^{0} x+x^{2} d x+\int_{0}^{1} x-x^{2} d x \\
& =\frac{x^{2}}{2}+\left.\frac{x^{3}}{3}\right|_{-1} ^{0}+\frac{x^{2}}{2}-\left.\frac{x^{3}}{3}\right|_{0} ^{1} \\
& =-\frac{1}{2}+\frac{1}{3}+\frac{1}{2}-\frac{1}{3} \\
& =0 \\
E(V) & =E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x \\
& =\int_{-1}^{0} x^{2}+x^{3} d x+\int_{0}^{1} x^{2}-x^{3} d x \\
& =\frac{x^{3}}{3}+\left.\frac{x^{4}}{4}\right|_{-1} ^{0}+\frac{x^{3}}{3}-\left.\frac{x^{4}}{4}\right|_{0} ^{1} \\
& =\frac{1}{3}-\frac{1}{4}+\frac{1}{3}-\frac{1}{4} \\
& =\frac{1}{6}
\end{aligned}
$$

$$
\begin{aligned}
E(U V) & =E\left(X^{3}\right)=\int_{-\infty}^{\infty} x^{3} f(x) d x \\
& =\int_{-1}^{0} x^{3}+x^{4} d x+\int_{0}^{1} x^{3}-x^{4} d x \\
& =\frac{x^{4}}{4}+\left.\frac{x^{5}}{5}\right|_{-1} ^{0}+\frac{x^{4}}{4}-\left.\frac{x^{5}}{5}\right|_{0} ^{1} \\
& =-\frac{1}{4}+\frac{1}{5}+\frac{1}{4}-\frac{1}{5} \\
& =0 \\
\operatorname{cov}(U, V)= & E(U V)-E(U) E(V)=0-0\left(\frac{1}{6}\right)=0
\end{aligned}
$$

4. Suppose 2 balls are removed (without replacement) from an urn containing n red balls and m blue balls, with $n, m \geq 2$. For $i=1,2$, let $X_{i}=1$ if the i th ball removed is red and $X_{i}=0$ if it is blue (i.e. not red).
(a) Do you think $\operatorname{cov}\left(X_{1}, X_{2}\right)$ is positive, negative or zero?
(b) Compute $\operatorname{cov}\left(X_{1}, X_{2}\right)$ to justify your answer to (a).
(c) Suppose the red balls are numbered 1 through n. Let $Y_{i}=1$ if red ball number i is removed, and $Y_{i}=0$ otherwise. Do you think $\operatorname{cov}\left(Y_{1}, Y_{2}\right)$ is positive, negative or zero?
(d) Compute $\operatorname{cov}\left(Y_{1}, Y_{2}\right)$ to justify your answer to (c).

Solution. (a) We might guess negative here. If the first ball is red, there is a greater chance the second one will not be red, and vice versa. i.e. there is a greater probability that high values for X_{1} occur with low values for X_{2} and vice versa.
(b)

$$
\begin{aligned}
E\left(X_{1}\right)= & \sum_{x_{1}} \sum_{x_{2}} x_{1} f\left(x_{1}, x_{2}\right) \\
= & 0 \cdot\left(\frac{m(m-1)}{(n+m)(n+m-1)}+\frac{n m}{(n+m)(n+m-1)}\right) \\
& +1 \cdot\left(\frac{n m}{(n+m)(n+m-1)}+\frac{n(n-1)}{(n+m)(n+m-1)}\right) \\
= & \frac{n}{n+m} \\
E\left(X_{2}\right)= & \sum_{x_{1}} \sum_{x_{2}} x_{2} f\left(x_{1}, x_{2}\right) \\
= & 0 \cdot\left(\frac{m(m-1)}{(n+m)(n+m-1)}+\frac{n m}{(n+m)(n+m-1)}\right) \\
& +1 \cdot\left(\frac{n m}{(n+m)(n+m-1)}+\frac{n(n-1)}{(n+m)(n+m-1)}\right) \\
= & \frac{n}{n+m}
\end{aligned}
$$

$$
\begin{aligned}
E\left(X_{1} X_{2}\right)= & \sum_{x_{1}} \sum_{x_{2}} x_{1} x_{2} f\left(x_{1}, x_{2}\right) \\
= & 0 \cdot\left(\frac{m(m-1)}{(n+m)(n+m-1)}+\frac{n m}{(n+m)(n+m-1)}+\frac{n m}{(n+m)(n+m-1)}\right) \\
& +1 \cdot\left(\frac{n(n-1)}{(n+m)(n+m-1)}\right) \\
= & \frac{n(n-1)}{(n+m)(n+m-1)} \\
\operatorname{cov}\left(X_{1}, X_{2}\right) & =E\left(X_{1} X_{2}\right)-E\left(X_{1}\right) E\left(X_{2}\right)=\frac{n(n-1)}{(n+m)(n+m-1)}-\left(\frac{n}{n+m}\right)^{2} \\
& =\frac{n(n-1)(n+m)-n^{2}(m+n-1)}{(n+m)^{2}(n+m-1)} \\
& =\frac{-n m}{(n+m)^{2}(n+m-1)}
\end{aligned}
$$

Therefore $\operatorname{cov}\left(X_{1}, X_{2}\right)<0$.
(c) A tough call? The likelihood of drawing ball 1 and/or 2 is low, and so the expected value for Y_{1} and Y_{2} should be closer to zero. There is a low probability that both Y_{1} and Y_{2} are 1 simultaneously, however there is a high probability that they are both 0 simultaneously. We will calculate directly to find out.
(d)

$$
\begin{aligned}
E\left(Y_{1}\right) & =\sum_{y_{1}} y_{1} f\left(y_{1}\right)=0 \cdot\left(\frac{(n+m-1)(n+m-2)}{(n+m)(n+m-1)}\right)+1 \cdot\left(\frac{2(n+m-1)}{(n+m)(n+m-1)}\right) \\
& =\frac{2}{(n+m)}
\end{aligned}
$$

Similarly $E\left(Y_{2}\right)=\frac{2}{(n+m)}$.

$$
\begin{aligned}
& E\left(Y_{1} Y_{2}\right)= \sum_{y_{1}} \sum_{y_{2}} y_{1} y_{2} f\left(y_{1}, y_{2}\right) \\
&= 0 \cdot\left(\frac{(n+m-2)(n+m-3)}{(n+m)(n+m-1)}+\frac{2(n+m-2)}{(n+m)(n+m-1)}+\frac{2(n+m-2)}{(n+m)(n+m-1)}\right) \\
&+1 \cdot\left(\frac{2}{(n+m)(n+m-1)}\right) \\
&= \frac{2}{(n+m)(n+m-1)} \\
& \begin{aligned}
\operatorname{cov}\left(Y_{1}, Y_{2}\right) & =E\left(Y_{1} Y_{2}\right)-E\left(Y_{1}\right) E\left(Y_{2}\right)=\frac{2}{(n+m)(n+m-1)}-\left(\frac{2}{n+m}\right)^{2} \\
& =\frac{2(n+m)-4(n+m-1)}{(n+m)^{2}(n+m-1)} \\
& =\frac{4-2 n-2 m}{(n+m)^{2}(n+m-1)}
\end{aligned}
\end{aligned}
$$

Since $m, n \geq 2$, it follows that $\operatorname{cov}\left(Y_{1}, Y_{2}\right)<0$.

