1. Suppose X and Y are discrete random variables with joint probability distribution given below.

		1	$\frac{x}{2}$	3
	1	0.10	0.08	0.06
y	2	0.12	0.12	0.06
	3	0.16	0.10	0.20

- (a) Find E(X) and E(Y).
- (b) Find var(X) and var(Y).
- (c) Find $\operatorname{cov}(X, Y)$.
- (d) The correlation between X and Y is defined as $\rho(X, Y) = \frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X)}\sqrt{\operatorname{var}(Y)}}$, provided $\operatorname{var}(X)$, $\operatorname{var}(Y) \neq 0$. It provides a measure of the degree of linearity between X and Y (this would appear in course on statistics). Find the correlation between X and Y.
- 2. The joint density function for continuous random variables X and Y is given by

$$f(x,y) = \begin{cases} \frac{1}{3}(x+y) & 0 < x < 1, 0 < y < 2\\ 0 & \text{otherwise} \end{cases}$$

Find cov(X, Y). Are X and Y independent?

3. Let X be a continuous random variable with probability density given by

$$f(x) = \begin{cases} 1+x & -1 < x \le 0\\ 1-x & 0 < x < 1\\ 0 & \text{otherwise} \end{cases}.$$

Let U = X and $V = X^2$. Show that cov(U, V) = 0.

- 4. Suppose 2 balls are removed (without replacement) from an urn containing n red balls and m blue balls, with $n, m \ge 2$. For i = 1, 2, let $X_i = 1$ if the *i*th ball removed is red and $X_i = 0$ if it is blue (i.e. not red).
 - (a) Do you think $cov(X_1, X_2)$ is positive, negative or zero?
 - (b) Compute $cov(X_1, X_2)$ to justify your answer to (a).
 - (c) Suppose the red balls are numbered 1 through n. Let $Y_i = 1$ if red ball number i is removed, and $Y_i = 0$ otherwise. Do you think $cov(Y_1, Y_2)$ is positive, negative or zero?
 - (d) Compute $cov(Y_1, Y_2)$ to justify your answer to (c).