1. Suppose X is a discrete random variable whose probability distribution function $f(x)$ is given by the following table.

x	-2	-1	0	1	2
$f(x)$	$\frac{1}{10}$	$\frac{3}{10}$	$\frac{3}{10}$	$\frac{1}{10}$	$\frac{2}{10}$

Find the variance of X

Round to 4 decimal places if needed.

Solution. We first compute the expected values of X and X^{2} :

$$
\begin{aligned}
E(X)=\sum_{x} x f(x) & =(-2) \cdot \frac{1}{10}+(-1) \cdot \frac{3}{10}+0 \cdot \frac{3}{10}+1 \cdot \frac{1}{10}+2 \cdot \frac{2}{10} \\
& =-\frac{2}{10}-\frac{3}{10}+0+\frac{1}{10}+\frac{4}{10}=0 \\
E\left(X^{2}\right)=\sum_{x} x^{2} f(x) & =(-2)^{2} \cdot \frac{1}{10}+(-1)^{2} \cdot \frac{3}{10}+0^{2} \cdot \frac{3}{10}+1^{2} \cdot \frac{1}{10}+2^{2} \cdot \frac{2}{10} \\
& =\frac{4}{10}+\frac{3}{10}+0+\frac{1}{10}+\frac{8}{10}=\frac{16}{10}=\frac{8}{5}=1.6
\end{aligned}
$$

It follows that the variance of X is given by:

$$
\operatorname{var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{8}{5}-0^{2}=\frac{8}{5}=1.6
$$

2. Suppose X is a continuous random variable with probability density function

$$
g(x)=\left\{\begin{array}{cc}
-\frac{x}{2} & -2 \leq x \leq 0 \\
0 & \text { otherwiise }
\end{array}\right.
$$

Find the variance of X.

Round to 4 decimal places if needed.

Solution. We first compute the expected values of X and X^{2} :

$$
\begin{aligned}
E(X) & =\int_{-\infty}^{\infty} x f(x) d x=\int_{-\infty}^{-2} x \cdot 0 d x+\int_{-2}^{0} x\left(-\frac{x}{2}\right) d x+\int_{0}^{\infty} x \cdot 0 d x \\
& =0+\int_{-2}^{0}\left(-\frac{x^{2}}{2}\right) d x+0=\left.\left(-\frac{x^{3}}{6}\right)\right|_{-2} ^{0} \\
& =\left(-\frac{0^{3}}{6}\right)-\left(-\frac{(-2)^{3}}{6}\right)=0-\left(-\frac{-8}{6}\right)=-\left(\frac{4}{3}\right)=-\frac{4}{3} \approx-1.3333 \\
E\left(X^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x=\int_{-\infty}^{-2} x^{2} \cdot 0 d x+\int_{-2}^{0} x^{2}\left(-\frac{x}{2}\right) d x+\int_{0}^{\infty} x^{2} \cdot 0 d x \\
& =0+\int_{-2}^{0}\left(-\frac{x^{3}}{2}\right) d x+0=\left.\left(-\frac{x^{4}}{8}\right)\right|_{-2} ^{0} \\
& =\left(-\frac{0^{4}}{8}\right)-\left(-\frac{(-2)^{4}}{8}\right)=0-\left(-\frac{16}{8}\right)=-(-2)=2
\end{aligned}
$$

It follows that the variance of X is given by:

$$
\operatorname{var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=2-\left[-\frac{4}{3}\right]^{2}=2-\frac{16}{9}=\frac{2}{9} \approx 0.2222
$$

3. Suppose X is a discrete random variable whose probability distribution function $f(x)$ is given by the following table.

$$
\begin{array}{c|ccccc}
x & -2 & -1 & 0 & 1 & 2 \\
\hline f(x) & \frac{1}{10} & \frac{3}{10} & \frac{3}{10} & \frac{1}{10} & \frac{2}{10}
\end{array}
$$

Find the fourth moment of X.

Round to 4 decimal places if needed.

Solution. The fourth moment of X is the expected value of X^{4} :

$$
\begin{aligned}
E\left(X^{4}\right) & =\sum_{x} x^{4} f(x)=(-2)^{4} \cdot \frac{1}{10}+(-1)^{4} \cdot \frac{3}{10}+0^{4} \cdot \frac{3}{10}+1^{4} \cdot \frac{1}{10}+2^{4} \cdot \frac{2}{10} \\
& =\frac{16}{10}+\frac{3}{10}+0+\frac{1}{10}+\frac{16}{10}=\frac{36}{10}=3.6
\end{aligned}
$$

4. Let X be a random variable with a variance of 5 . Find the variance of Y if $Y=4+3 X$.

Round to 4 decimal places if needed.

Solution.

$$
\operatorname{var}(Y)=\operatorname{var}(4+3 X)=3^{2} \operatorname{var}(X)=45
$$

5. Suppose that a random variable Y has mean $\mu=45$ and standard deviation $\sigma=5$. Use Chebyshev's Inequality to find a minimum value for $P(35<Y<55)$.

Round to 4 decimal places if needed.

Solution. Here we go:

$$
\begin{aligned}
P(35<Y<55) & =P(35-45<Y-45<55-45)=P(-10<Y-45<10) \\
& =P(|Y-45|<10)=P(|Y-45|<2 \cdot 5)=P(|Y-\mu|<2 \sigma)
\end{aligned} \text { By Chebyshev: } \quad P(|Y-\mu|<2 \sigma) \geq 1-\frac{1}{2^{2}}=1-\frac{1}{4}=\frac{3}{4} .
$$

Thus $P(35<Y<55)$ must be at least $\frac{3}{4}=0.75$.
6. Suppose X is a discrete random variable whose probability distribution function $f(x)$ is given by the following table.

$$
\begin{array}{c|ccccc}
x & -2 & -1 & 0 & 1 & 2 \\
\hline f(x) & \frac{1}{10} & \frac{3}{10} & \frac{3}{10} & \frac{1}{10} & \frac{2}{10}
\end{array}
$$

What is the probability that X lies within 1 standard deviation of its mean?

Round to 4 decimal places if needed.

Solution. This is the same probability distribution function that we saw in question $\mathbf{1}$, so X has mean $\mu=E(X)=0$ and variance $\sigma^{2}=\operatorname{var}(X)=1.6$, and thus standard deviation $\sigma=\sqrt{1.6} \approx 1.2649$. X takes on three possible values between $\mu-\sigma=0-1.2649=-1.2649$ and $\mu+\sigma=0+1.2649=1.2649$, namely $-1,0$, and 1 . Thus

$$
\begin{aligned}
P(|X-\mu|<\sigma) & =P(|X-0|<1.2649)=P(X=-1)+P(X=0)+P(X=1) \\
& =f(-1)+f(0)+f(1)=\frac{3}{10}+\frac{3}{10}+\frac{1}{10}=\frac{7}{10}=0.7
\end{aligned}
$$

