MATH1550, Winter 2023
Mini-Assignment 6 — Cumulative and Joint Distributions

1. Suppose
x € (—00,0]

0
Fx)={ Vi we(0,1)

1 ze[l,00)

is the cumulative probability function of the random variable X. What is the probability density
function f(x) of X?
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Solution. Take the derivative of each piece of F(x) to obtain f(z):
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2. The random variable W has probability density function
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What is the cumulative probability function G(w) of W?
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Solution. For w < 1, G(w) = 0. For w > 1,
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. The random variable T describes when an atom of a certain radioactive element decays after start time
t = 0. T has the probability density function
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Find the half-life of the element in question, i.e. the value of ¢ such that P(T < t) = 3.

Round to 4 decimal places if necessary.
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a valid cumulative probability function for some random variable X7

Solution. Note that G(0) =1 and G(1) =1 — 1 < 1. This violates the property that G(a) < G(b) for
a < b when G is a cumulative distribution function (i.e. cumulative probability should only increase).
Thus G is not a valid cumulative probability distribution function.
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. Two fair three-sided dice, one blue and one red, each have faces numbered 1, 2 and 3. The pair of dice
are rolled twice (i.e. both dice are rolled once, then both dice are rolled again). Let X be the number
of times, out the 2 rolls, in which the sum of the two dice is an even number. Let Y be the number
of times, out of the 2 rolls, in which the blue die comes up with an odd-number. If f(z,y) is the joint
probability distribution of X and Y, what is f(0,2)?



Round to 4 decimal places if necessary.

Solution. To have X = 0 and Y = 2 means that both rolls had an odd sum, and in both rolls the blue
die had an odd number. This means the blue die is either 8 or 8 and the red die is £J . There are
3 - 3 = 9 different pairs that can come up on a single roll, and hence 9 - 9 = 81 different ways the two
rolls could come out. There are 4 “successful” outcomes in this case:

(80, 80), (80, 80), (80, 80), (80, 80).

Therefore f(0,2) = &&.

As an exercise, show that the joint probability distribution is
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6. The discrete random variables U and W have the joint probability distribution g(u,w) given by the
following table:

3102 01 0.1

Let G(u,w) be the cumulative probability distribution function of U and W. Compute G(2,1).

Round to 4 decimal places if necessary.

Solution.

G(2,1) = P(U<2,W <1)=g(—1,1) +g(0,1) + g(1,1) = 0.1+ 0+ 0.2 = 0.3.
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