Mini-Assignment 6 - Cumulative and Joint Distributions

1. Suppose

$$
F(x)=\left\{\begin{array}{cl}
0 & x \in(-\infty, 0] \\
\sqrt{x} & x \in(0,1) \\
1 & x \in[1, \infty)
\end{array}\right.
$$

is the cumulative probability function of the random variable X. What is the probability density function $f(x)$ of X ?
$\mathrm{A}: f(x)=\left\{\begin{array}{cl}0 & x \in(-\infty, 0] \\ x^{\frac{1}{2}} & x \in(0,1) \\ 1 & x \in[1, \infty)\end{array}, \quad \mathrm{B}: f(x)=\left\{\begin{array}{cl}0 & x \in(-\infty, 0] \\ \frac{1}{\sqrt{x}} & x \in(0,1) \\ 1 & x \in[1, \infty)\end{array}, \quad \mathrm{C}: f(x)=\left\{\begin{array}{cl}0 & x \in(-\infty, 0] \\ \frac{2 x^{\frac{3}{2}}}{3} & x \in(0,1) \\ x & x \in[1, \infty)\end{array}\right.\right.\right.$
$\mathrm{D}: f(x)=\left\{\begin{array}{cl}0 & x \in(-\infty, 0] \\ \frac{1}{2 \sqrt{x}} & x \in(0,1) \\ 1 & x \in[1, \infty)\end{array}, \quad \mathrm{E}: f(x)=\left\{\begin{array}{cl}0 & x \in(-\infty, 0] \\ \frac{1}{2 \sqrt{x}} & x \in(0,1) \\ x & x \in[1, \infty)\end{array}, \quad \mathrm{F}: f(x)=\left\{\begin{array}{cl}\frac{1}{2 \sqrt{x}} & x \in(0,1) \\ 0 & \text { else }\end{array}\right.\right.\right.$

$$
\begin{gathered}
\mathrm{G}: f(x)=\left\{\begin{array}{ll}
0 & x \in(-\infty, 0] \\
\frac{2}{\sqrt{x}} & x \in(0,1) \\
1 & x \in[1, \infty)
\end{array}, \quad \mathrm{H}: f(x)=\left\{\begin{array}{cl}
\frac{2 x^{\frac{3}{2}}}{3} & x \in(0,1) \\
0 & \text { else }
\end{array}, \quad \mathrm{I}: f(x)=\left\{\begin{array}{cc}
0 & x \leq 0 \\
\frac{1}{2 \sqrt{x}} & x>0
\end{array}\right.\right.\right. \\
\mathrm{J}: f(x)=\left\{\begin{array}{cl}
\sqrt{x} & x \in(0,1) \\
0 & \text { else }
\end{array}, \quad \mathrm{K}: f(x)=\left\{\begin{array}{cl}
\frac{2}{\sqrt{x}} & x \in(0,1) \\
0 & \text { else }
\end{array}, \quad\right. \text { L: Neither }\right.
\end{gathered}
$$

Solution. Take the derivative of each piece of $F(x)$ to obtain $f(x)$:

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{2 \sqrt{x}} & x \in(0,1) \\
0 & \text { else }
\end{array}\right.
$$

2. The random variable W has probability density function

$$
g(w)=\left\{\begin{array}{cc}
0 & w<1 \\
\frac{1}{w^{2}} & w \geq 1
\end{array}\right.
$$

What is the cumulative probability function $G(w)$ of W ?

$$
\begin{aligned}
& \mathrm{A}: G(w)=\left\{\begin{array}{ll}
0 & w<1 \\
\frac{1}{w^{2}} & w \geq 1
\end{array}, \quad \mathrm{~B}: G(w)=\left\{\begin{array}{cl}
0 & w<1 \\
1+\frac{1}{w} & w \geq 1
\end{array}, \quad \mathrm{C}: G(w)= \begin{cases}0 & w<1 \\
\frac{1}{w} & w \geq 1\end{cases} \right.\right. \\
& \mathrm{D}: G(w)=\left\{\begin{array}{cl}
0 & w<0 \\
1-\frac{1}{w^{2}} & w \in(0,1), \\
1 & w \geq 1
\end{array} \quad \mathrm{E}: G(w)=\left\{\begin{array}{cl}
0 & w<1 \\
1-\frac{1}{w} & w \in(0,1), \quad \mathrm{F}: G(w)=\left\{\begin{array}{cc}
0 & w<1 \\
1-\frac{2}{w^{3}} & w \geq 1
\end{array}\right.
\end{array} . \begin{array}{l}
w \geq 1
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{G}: G(w)=\left\{\begin{array}{cc}
0 & w<1 \\
-\frac{1}{w} & w \geq 1
\end{array}, \quad \mathrm{H}: G(w)=\left\{\begin{array}{cc}
0 & w<1 \\
1-\frac{1}{w} & w \geq 1
\end{array}, \quad \mathrm{I}: G(w)=\left\{\begin{array}{cc}
0 & w<1 \\
\frac{2}{w^{3}} & w \geq 1
\end{array}\right.\right.\right. \\
\mathrm{J}: G(w)=\left\{\begin{array}{cl}
0 & w<0 \\
1-\frac{1}{w} & w \in(0,1), \quad \mathrm{K}: G(w)=\left\{\begin{array}{cl}
0 & w<1 \\
-\frac{1}{w} & w \in(0,1), \quad \text { L: Neither } \\
1 & w \geq 1
\end{array}\right.
\end{array} . \begin{array}{l}
w \geq 1
\end{array}\right.
\end{gathered}
$$

Solution. For $w<1, G(w)=0$. For $w \geq 1$,

$$
G(w)=\int_{-\infty}^{w} g(t) d t=\int_{1}^{w} \frac{1}{t^{2}} d t=-\left.\frac{1}{t}\right|_{1} ^{w}=1-\frac{1}{w} .
$$

Thus

$$
G(w)=\left\{\begin{array}{cc}
0 & w<1 \\
1-\frac{1}{w} & w \geq 1
\end{array}\right.
$$

3. The random variable T describes when an atom of a certain radioactive element decays after start time $t=0 . T$ has the probability density function

$$
h(t)=\left\{\begin{array}{cc}
0 & t<0 \\
e^{-t} & t \geq 0
\end{array}\right.
$$

Find the half-life of the element in question, i.e. the value of t such that $P(T \leq t)=\frac{1}{2}$.
Round to 4 decimal places if necessary.

Solution.

$$
\frac{1}{2}=P(T \leq t)=\int_{-\infty}^{t} h(x) d x=\int_{0}^{t} e^{-x} d x=-\left.e^{-x}\right|_{0} ^{t}=1-e^{-t}
$$

thus

$$
\frac{1}{2}=1-e^{-t} \quad \Rightarrow \quad e^{-t}=\frac{1}{2} \quad \Rightarrow \quad e^{t}=2 \quad \Rightarrow \quad t=\ln 2 \approx 0.6931
$$

4. Is

$$
G(x)=\left\{\begin{array}{cl}
0 & x \in(-\infty, 0] \\
1-x e^{-x} & x \in(0, \infty)
\end{array}\right.
$$

a valid cumulative probability function for some random variable X ?

Solution. Note that $G(0)=1$ and $G(1)=1-\frac{1}{e}<1$. This violates the property that $G(a) \leq G(b)$ for $a<b$ when G is a cumulative distribution function (i.e. cumulative probability should only increase). Thus G is not a valid cumulative probability distribution function.
5. Two fair three-sided dice, one blue and one red, each have faces numbered 1,2 and 3 . The pair of dice are rolled twice (i.e. both dice are rolled once, then both dice are rolled again). Let X be the number of times, out the 2 rolls, in which the sum of the two dice is an even number. Let Y be the number of times, out of the 2 rolls, in which the blue die comes up with an odd-number. If $f(x, y)$ is the joint probability distribution of X and Y, what is $f(0,2)$?

Round to 4 decimal places if necessary.

Solution. To have $X=0$ and $Y=2$ means that both rolls had an odd sum, and in both rolls the blue die had an odd number. This means the blue die is either $\boldsymbol{\bullet}$ or and the red die is \cdot. There are $3 \cdot 3=9$ different pairs that can come up on a single roll, and hence $9 \cdot 9=81$ different ways the two rolls could come out. There are 4 "successful" outcomes in this case:

Therefore $f(0,2)=\frac{4}{81}$.
As an exercise, show that the joint probability distribution is

	x		
	0	1	2
0	$\frac{4}{81}$	$\frac{4}{81}$	$\frac{1}{81}$
$y \quad 1$	$\frac{8}{81}$	$\frac{20}{81}$	$\frac{8}{81}$
2	$\frac{4}{81}$	$\frac{16}{81}$	$\frac{16}{81}$

6. The discrete random variables U and W have the joint probability distribution $g(u, w)$ given by the following table:

Let $G(u, w)$ be the cumulative probability distribution function of U and W. Compute $G(2,1)$.

Round to 4 decimal places if necessary.

Solution.

$$
G(2,1)=P(U \leq 2, W \leq 1)=g(-1,1)+g(0,1)+g(1,1)=0.1+0+0.2=0.3
$$

