1. Suppose

$$F(x) = \begin{cases} 0 & x \in (-\infty, 0] \\ \sqrt{x} & x \in (0, 1) \\ 1 & x \in [1, \infty) \end{cases}$$

is the cumulative probability function of the random variable X. What is the probability density function f(x) of X?

$$A: f(x) = \begin{cases} 0 & x \in (-\infty, 0] \\ x^{\frac{1}{2}} & x \in (0, 1) \\ 1 & x \in [1, \infty) \end{cases}, B: f(x) = \begin{cases} 0 & x \in (-\infty, 0] \\ \frac{1}{\sqrt{x}} & x \in (0, 1) \\ 1 & x \in [1, \infty) \end{cases}, C: f(x) = \begin{cases} 0 & x \in (-\infty, 0] \\ \frac{2x^{\frac{3}{2}}}{3} & x \in (0, 1) \\ x & x \in [1, \infty) \end{cases}$$

$$D: f(x) = \begin{cases} 0 & x \in (-\infty, 0] \\ \frac{1}{2\sqrt{x}} & x \in (0, 1) \\ 1 & x \in [1, \infty) \end{cases}, \quad E: f(x) = \begin{cases} 0 & x \in (-\infty, 0] \\ \frac{1}{2\sqrt{x}} & x \in (0, 1) \\ x & x \in (0, 1) \end{cases}, \quad F: f(x) = \begin{cases} \frac{1}{2\sqrt{x}} & x \in (0, 1) \\ 0 & \text{else} \end{cases}$$

$$\mathbf{G}: f(x) = \begin{cases} 0 & x \in (-\infty, 0] \\ \frac{2}{\sqrt{x}} & x \in (0, 1) \\ 1 & x \in [1, \infty) \end{cases}, \quad \mathbf{H}: f(x) = \begin{cases} \frac{2x^{\frac{3}{2}}}{3} & x \in (0, 1) \\ 0 & \text{else} \end{cases}, \quad \mathbf{I}: f(x) = \begin{cases} 0 & x \le 0 \\ \frac{1}{2\sqrt{x}} & x > 0 \end{cases}$$

J:
$$f(x) = \begin{cases} \sqrt{x} & x \in (0,1) \\ 0 & \text{else} \end{cases}$$
, K: $f(x) = \begin{cases} \frac{2}{\sqrt{x}} & x \in (0,1) \\ 0 & \text{else} \end{cases}$, L: Neither

Solution. Take the derivative of each piece of F(x) to obtain f(x):

$$f(x) = \begin{cases} \frac{1}{2\sqrt{x}} & x \in (0,1) \\ 0 & \text{else} \end{cases}$$

2. The random variable W has probability density function

$$g(w) = \begin{cases} 0 & w < 1\\ \frac{1}{w^2} & w \ge 1 \end{cases}$$

What is the cumulative probability function G(w) of W?

$$\begin{aligned} \mathbf{A}: \, G(w) &= \begin{cases} 0 \quad w < 1\\ \frac{1}{w^2} \quad w \ge 1 \end{cases}, \quad \mathbf{B}: \, G(w) = \begin{cases} 0 \quad w < 1\\ 1 + \frac{1}{w} \quad w \ge 1 \end{cases}, \quad \mathbf{C}: \, G(w) = \begin{cases} 0 \quad w < 1\\ \frac{1}{w} \quad w \ge 1 \end{cases} \\ \end{aligned}$$
$$\begin{aligned} \mathbf{D}: \, G(w) &= \begin{cases} 0 \quad w < 0\\ 1 - \frac{1}{w^2} \quad w \in (0, 1) \,, \quad \mathbf{E}: \, G(w) = \begin{cases} 0 \quad w < 1\\ 1 - \frac{1}{w} \quad w \in (0, 1) \,, \quad \mathbf{F}: \, G(w) = \begin{cases} 0 \quad w < 1\\ 1 - \frac{2}{w^3} \quad w \ge 1 \end{cases} \end{aligned}$$

$$\begin{aligned} \mathbf{G}: \ G(w) &= \begin{cases} 0 & w < 1 \\ -\frac{1}{w} & w \ge 1 \end{cases}, \quad \mathbf{H}: \ G(w) &= \begin{cases} 0 & w < 1 \\ 1 - \frac{1}{w} & w \ge 1 \end{cases}, \quad \mathbf{I}: \ G(w) &= \begin{cases} 0 & w < 1 \\ \frac{2}{w^3} & w \ge 1 \end{cases} \end{aligned}$$
$$\mathbf{J}: \ G(w) &= \begin{cases} 0 & w < 0 \\ 1 - \frac{1}{w} & w \in (0, 1) \\ 1 & w \ge 1 \end{cases}, \quad \mathbf{K}: \ G(w) &= \begin{cases} 0 & w < 1 \\ -\frac{1}{w} & w \in (0, 1) \\ 1 & w \ge 1 \end{cases}$$
 Neither
$$\mathbf{I}: \ \mathbf{W} \in \mathbf{I}$$

Solution. For w < 1, G(w) = 0. For $w \ge 1$,

$$G(w) = \int_{-\infty}^{w} g(t) \, dt = \int_{1}^{w} \frac{1}{t^2} \, dt = -\frac{1}{t} \Big|_{1}^{w} = 1 - \frac{1}{w}$$

Thus

$$G(w) = \begin{cases} 0 & w < 1\\ 1 - \frac{1}{w} & w \ge 1 \end{cases}$$

3. The random variable T describes when an atom of a certain radioactive element decays after start time t = 0. T has the probability density function

$$h(t) = \begin{cases} 0 & t < 0\\ e^{-t} & t \ge 0 \end{cases}.$$

Find the half-life of the element in question, *i.e.* the value of t such that $P(T \le t) = \frac{1}{2}$.

Round to 4 decimal places if necessary.

Solution.

$$\frac{1}{2} = P(T \le t) = \int_{-\infty}^{t} h(x) \, dx = \int_{0}^{t} e^{-x} \, dx = -e^{-x} \Big|_{0}^{t} = 1 - e^{-t},$$

thus

$$\frac{1}{2} = 1 - e^{-t} \quad \Rightarrow \quad e^{-t} = \frac{1}{2} \quad \Rightarrow \quad e^t = 2 \quad \Rightarrow \quad t = \ln 2 \approx 0.6931$$

4. Is

$$G(x) = \begin{cases} 0 & x \in (-\infty, 0] \\ 1 - xe^{-x} & x \in (0, \infty) \end{cases}$$

a valid cumulative probability function for some random variable X?

Solution. Note that G(0) = 1 and $G(1) = 1 - \frac{1}{e} < 1$. This violates the property that $G(a) \le G(b)$ for a < b when G is a cumulative distribution function (i.e. cumulative probability should only increase). Thus G is not a valid cumulative probability distribution function.

5. Two fair three-sided dice, one blue and one red, each have faces numbered 1, 2 and 3. The pair of dice are rolled twice (i.e. both dice are rolled once, then both dice are rolled again). Let X be the number of times, out the 2 rolls, in which the sum of the two dice is an even number. Let Y be the number of times, out of the 2 rolls, in which the blue die comes up with an odd-number. If f(x, y) is the joint probability distribution of X and Y, what is f(0, 2)?

Round to 4 decimal places if necessary.

Solution. To have X = 0 and Y = 2 means that both rolls had an odd sum, and in both rolls the blue die had an odd number. This means the blue die is either \square or \square and the red die is \square . There are $3 \cdot 3 = 9$ different pairs that can come up on a single roll, and hence $9 \cdot 9 = 81$ different ways the two rolls could come out. There are 4 "successful" outcomes in this case:

 $(\blacksquare, \blacksquare), (\blacksquare, \blacksquare), (\blacksquare, \blacksquare), (\blacksquare, \blacksquare), (\blacksquare, \blacksquare).$

Therefore $f(0,2) = \frac{4}{81}$.

As an exercise, show that the joint probability distribution is

			x	
		0	1	2
	0	$\frac{4}{81}$	$\frac{4}{81}$	$\frac{1}{81}$
y	1	$\frac{8}{81}$	$\frac{20}{81}$	$\frac{8}{81}$
	2	$\frac{4}{81}$	$\frac{16}{81}$	$\frac{16}{81}$

6. The discrete random variables U and W have the joint probability distribution g(u, w) given by the following table:

		-1	$egin{array}{c} u \ 0 \end{array}$	1
	1	0.1	0	0.2
w	2	0.1	0.2	0
	3	0.2	0.1	0.1

Let G(u, w) be the cumulative probability distribution function of U and W. Compute G(2, 1).

Round to 4 decimal places if necessary.

Solution.

$$G(2,1) = P(U \le 2, W \le 1) = g(-1,1) + g(0,1) + g(1,1) = 0.1 + 0 + 0.2 = 0.3.$$