MATH1550, Winter 2023
Mini-Assignment 5 — Continuous Distributions

1. Which of the following functions are allowable as a probability density function for some continuous
random variable?

322 —1<z<0 5(1—zH* 0<z<1
A: fi(z) = -~ B: fo(z) = ( ) - -
0 else 0 else
10 3(Q..2
=3 > 10 28zx*—6x+1) 0<z<1
C: f == 7 D: ={2 -~
fa(@) {0 z <10 fal@) {O else
1—22 -1 1
E: f5(z) = * ses F: Neither
0 else

Solution. For each function we must check whether f(z) > 0 for all z € R, and if [~ f(z) =1. One
can see fairly easily by inspection that fi(z), fo(z), fa(x), fs(x) > 0 for all € R, so that leaves f4(z).
Solving 822 — 62 + 1 = 0 with the quadratic formula we have
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Since 822 —6x+1 is a parabola opening upwards, we see that 8z2—6xz+1 < 0, and hence %(8372—637—1—1) <
0 on the interval (4, 1). This rules out f4(z) as a valid probability density function.
Next we check the second property.
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Therefore only fi(z) and f3(z) are valid probability density functions.

2. Consider the function
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If possible, find a value for k € R which makes this a valid probability density function.



A k=1, B:k=-1 C:k:% D:k:%

E: k=24 F: k=25 G k=0 H: No such k exists.

Solution. Note that f(z) = k(2z — 2?) = kx(2 — x) is zero when x = 0 and x — 2. Since this is a
parabola opening downwards, it follows that f(z) > 0 for z € (0,2) and f(z) < 0 for = € (2, 3). Since
the function takes both positive and negative values, there can be no k € R such that f(z) > 0 for all
r eR. O

. The cumulative distribution function for a continuous random variable X is given by
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Find P(0.5 < X < 1.5)

Round to 4 decimal places if needed.
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5. The probability density function for a continuous random variable X is given by
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and its cumulative distribution function is given (partially) by
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Solution. For 0 < x < 1:
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6. The shelf life (in days) of a certain packaged food item is a continuous random variable with probability

density function
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What is the probability that a given package will last at least 100 days?

Round to 4 decimal places if needed.
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