Mini-Assignment 5 - Continuous Distributions

1. Which of the following functions are allowable as a probability density function for some continuous random variable?

$$
\begin{aligned}
& \text { A: } f_{1}(x)=\left\{\begin{array}{lll}
3 x^{2} & -1 \leq x \leq 0 \\
0 & \text { else }
\end{array} \quad \text { B: } f_{2}(x)= \begin{cases}5\left(1-x^{4}\right)^{4} & 0 \leq x \leq 1 \\
0 & \text { else }\end{cases} \right. \\
& \text { C: } f_{3}(x)=\left\{\begin{array}{lll}
\frac{10}{x^{2}} & x>10 \\
0 & x \leq 10 & \text { D: } f_{4}(x)= \begin{cases}\frac{3}{2}\left(8 x^{2}-6 x+1\right) & 0 \leq x \leq 1 \\
0 & \text { else }\end{cases} \\
\text { E: } f_{5}(x)=\left\{\begin{array}{ll}
1-x^{2} & -1<x<1 \\
0 & \text { else }
\end{array}\right. \text { F: Neither }
\end{array}\right. \\
&
\end{aligned}
$$

Solution. For each function we must check whether $f(x) \geq 0$ for all $x \in \mathbb{R}$, and if $\int_{-\infty}^{\infty} f(x)=1$. One can see fairly easily by inspection that $f_{1}(x), f_{2}(x), f_{3}(x), f_{5}(x) \geq 0$ for all $x \in \mathbb{R}$, so that leaves $f_{4}(x)$. Solving $8 x^{2}-6 x+1=0$ with the quadratic formula we have

$$
x=\frac{6 \pm \sqrt{4}}{16}=\Rightarrow \quad x=\frac{1}{4} \text { or } x=\frac{1}{2}
$$

Since $8 x^{2}-6 x+1$ is a parabola opening upwards, we see that $8 x^{2}-6 x+1<0$, and hence $\frac{3}{2}\left(8 x^{2}-6 x+1\right)<$ 0 on the interval $\left(\frac{1}{4}, \frac{1}{2}\right)$. This rules out $f_{4}(x)$ as a valid probability density function.
Next we check the second property.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f_{1}(x) d x=\int_{-1}^{0} 3 x^{2} d x=\left.x^{3}\right|_{-1} ^{0}=0-(-1)=1 \\
& \int_{-\infty}^{\infty} f_{2}(x) d x=\int_{0}^{1} 5\left(1-x^{4}\right)^{4} d x \\
&=5 \int_{0}^{1} 1-4 x^{4}+6 x^{8}-4 x^{12}+x^{16} d x \\
&=\left.5\left(x-\frac{4 x^{5}}{5}+\frac{2 x^{9}}{3}-\frac{4 x^{13}}{13}+\frac{x^{17}}{17}\right)\right|_{0} ^{1} \\
&=\frac{2048}{663} \\
& \neq 1 . \\
& \int_{-\infty}^{\infty} f_{3}(x) d x=\int_{10}^{\infty} \frac{10}{x^{2}} d x=-\left.\frac{10}{x}\right|_{10} ^{\infty}=0-(-1)=1 \\
& \int_{-\infty}^{\infty} f_{5}(x) d x=\int_{-1}^{1} 1-x^{2} d x=x-\left.\frac{x^{3}}{3}\right|_{-1} ^{1}=\frac{2}{3}-\left(-\frac{2}{3}\right)=\frac{4}{3} \neq 1
\end{aligned}
$$

Therefore only $f_{1}(x)$ and $f_{3}(x)$ are valid probability density functions.
2. Consider the function

$$
f(x)= \begin{cases}k\left(2 x-x^{2}\right) & 0<x<\frac{5}{2} \\ 0 & \text { else }\end{cases}
$$

If possible, find a value for $k \in \mathbb{R}$ which makes this a valid probability density function.
A: $k=1$,
$\mathrm{B}: k=-1$
$\mathrm{C}: k=\frac{24}{25}$
D: $k=\frac{25}{24}$
$\mathrm{E}: k=24$
$\mathrm{F}: k=25$
$\mathrm{G}: k=0$
H: No such k exists.

Solution. Note that $f(x)=k\left(2 x-x^{2}\right)=k x(2-x)$ is zero when $x=0$ and $x-2$. Since this is a parabola opening downwards, it follows that $f(x)>0$ for $x \in(0,2)$ and $f(x)<0$ for $x \in\left(2, \frac{5}{2}\right)$. Since the function takes both positive and negative values, there can be no $k \in \mathbb{R}$ such that $f(x) \geq 0$ for all $x \in \mathbb{R}$.
3. The cumulative distribution function for a continuous random variable X is given by

$$
F(x)= \begin{cases}0 & x<0 \\ \frac{x^{2}}{2} & 0 \leq x \leq 1 \\ 1-\frac{1}{2}(2-x)^{2} & 1 \leq x \leq 2 \\ 1 & x>2\end{cases}
$$

Find $P(0.5<X<1.5)$

Round to 4 decimal places if needed.

Solution.

$$
P(0.5<X<1.5)=F(1.5)-F(0.5)=\frac{7}{8}-\frac{1}{8}=\frac{3}{4} .
$$

4. The probability density function for a continuous random variable X is given by

$$
f(x)= \begin{cases}x & 0<x<1 \\ 2-x & 0 \leq x \leq 1 \\ 0 & \text { else }\end{cases}
$$

Find $P(0.5<X<1.5)$

Round to 4 decimal places if needed.

Solution.

$$
\begin{aligned}
P(0.5<X<1.5) & =\int_{0.5}^{1.5} f(x) d x \\
& =\int_{0.5}^{1} x d x+\int_{1}^{1.5} 2-x d x \\
& =\left[\frac{x^{2}}{2}\right]_{0.5}^{1}+\left[2 x-\frac{x^{2}}{2}\right]_{1}^{1.5} \\
& =\left(\frac{1}{2}-\frac{1}{8}\right)+\left(\frac{15}{8}-\frac{3}{2}\right) \\
& =\frac{3}{4}
\end{aligned}
$$

5. The probability density function for a continuous random variable X is given by

$$
f(x)= \begin{cases}\frac{1}{3} & 0<x<1 \\ \frac{1}{3} & 2<x<4 \\ 0 & \text { else }\end{cases}
$$

and its cumulative distribution function is given (partially) by

$$
F(x)= \begin{cases}0 & x \leq 0 \\ R_{1} & 0<x<1 \\ R_{2} & 1 \leq x \leq 2 \\ R_{3} & 2<x<3 \\ R_{4} & 3 \leq x<4 \\ 1 & x \geq 4\end{cases}
$$

Find the rule for R_{2}.
A: $R_{2}=0$
B: $R_{2}=\frac{1}{3}$
$\mathrm{C}: R_{2}=\frac{2}{3}$
D: $R_{2}=\frac{x}{3}$
$\mathrm{E}: R_{2}=\frac{2 x}{3}$
F: Neither

Solution. For $0<x<1$:

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{0}^{x} \frac{1}{3} d t=\left.\frac{t}{3}\right|_{0} ^{x}=\frac{x}{3}
$$

For $1 \leq x \leq 2$:

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{0}^{1} \frac{1}{3} d t+\int_{1}^{x} 0 d t=\left.\frac{t}{3}\right|_{0} ^{1}=\frac{1}{3}
$$

For $2<x<4$:

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{0}^{1} \frac{1}{3} d t+\int_{1}^{2} 0 d t+\int_{2}^{x} \frac{1}{3} d t=\left.\frac{t}{3}\right|_{0} ^{1}+\left.\frac{t}{3}\right|_{2} ^{x}=\frac{x}{3}-\frac{1}{3}
$$

Thus

$$
F(x)= \begin{cases}0 & x \leq 0 \\ \frac{x}{3} & 0<x<1 \\ \frac{1}{3} & 1 \leq x \leq 2 \\ \frac{x}{3}-\frac{1}{3} & 2<x<3 \\ \frac{x}{3}-\frac{1}{3} & 3 \leq x<4 \\ 1 & x \geq 4\end{cases}
$$

and we see that $R_{2}=\frac{1}{3}$.
6. The shelf life (in days) of a certain packaged food item is a continuous random variable with probability density function

$$
f(x)= \begin{cases}\frac{20000}{(x+100)^{3}} & x>0 \\ 0 & \text { else }\end{cases}
$$

What is the probability that a given package will last at least 100 days?

Round to 4 decimal places if needed.

Solution.

$$
P(X \geq 100)=\int_{100}^{\infty} \frac{20000}{(x+100)^{3}} d x=-\left.\frac{10000}{(x+100)^{2}}\right|_{100} ^{\infty}=0-\left(-\frac{10000}{40000}\right)=\frac{1}{4}
$$

