1. The face cards in a standard 52 -card deck are the K's, Q's, and J's. A seven card hand is chosen randomly, all seven at once, from the deck. The discrete random variable Y counts how many face cards there are in the hand. What is the probability distribution function of Y ?
A: $f(y)=\frac{\binom{4}{y}\binom{3}{3}\binom{52}{7-y}}{\binom{52}{7}}$,
$\mathrm{B}: f(y)=\frac{\binom{13}{3}\binom{12}{7}}{\binom{52}{7}}$,
$\mathrm{C}: f(y)=\frac{\binom{3}{1}\binom{4}{y}\binom{40}{7-y}}{\binom{52}{7}}$,
D: $f(y)=\frac{\binom{12}{7}\binom{40}{y}}{\binom{52}{7}}$,
$\mathrm{E}: f(y)=\frac{\binom{12}{y}\binom{40}{7-y}}{\binom{52}{7}}$,
$\mathrm{F}: f(y)=\frac{\binom{13}{7}\binom{4}{3}\binom{7}{y}}{\binom{52}{7}}$,
$\mathrm{G}: f(y)=\frac{\binom{4}{y}\binom{4}{y-1}\binom{4}{y-2}\binom{40}{7-y}}{\binom{52}{7}}$,
H: Neither

Solution. The range of Y is $\{0,1,2,3,4,5,6,7\}$. The probability distribution for Y is

$$
P(Y=y)=\frac{\binom{12}{y}\binom{40}{-y}}{\binom{52}{7}}
$$

2. Find the value of k, if one exists, such that $f(x)=\frac{x}{k}$ is a valid probability distribution function for a discrete random variable X which can take on the values $0,1,2,3$, or 4 .

Round to 4 decimal places if needed.
Solution. We require that

$$
1=\sum_{x=0}^{4} \frac{x}{k}=\frac{0+1+2+3+4}{k}=\frac{10}{k}
$$

which forces $k=10$. Since $\frac{x}{10} \geq 0$ for each $x \in\{0,1,2,3,4\}$, we see that $f(x)=\frac{x}{10}$ is a valid probability distribution for X.
3. A fair standard die is rolled twice. The discrete random variable Y is given by the number that came up on the first roll minus the number that came up on the second roll. What is the cumulative distribution function of Y ?

$$
\begin{aligned}
& \mathrm{D}: F(y)=\left\{\begin{array}{l}
0 \text { for } y \leq-5 \\
\frac{1}{36} \text { for }-5<y \leq-4 \\
\frac{3}{36} \text { for }-4<y \leq-3 \\
\frac{6}{36} \text { for }-3<y \leq-2 \\
\frac{10}{36} \text { for }-2<y \leq-1 \\
\frac{15}{36} \text { for }-1<y \leq 0 \\
\frac{21}{36} \text { for } 0<y \leq 1 \\
\frac{26}{36} \text { for } 1<y \leq 2 \\
\frac{30}{36} \text { for } 2<y \leq 3 \\
\frac{33}{36} \text { for } 3<y \leq 4 \\
\frac{35}{36} \text { for } 4<y \leq 5 \\
1
\end{array} \text { for } y>5 \quad, \quad \text { E: } F(y)=\left\{\begin{array}{ll}
0 & \text { for } y<-5 \\
\frac{1}{36} & \text { for }-5 \leq y<-4 \\
\frac{2}{36} & \text { for }-4 \leq y<-3 \\
\frac{3}{36} & \text { for }-3 \leq y<-2 \\
\frac{4}{36} & \text { for }-2 \leq y<-1 \\
\frac{5}{36} & \text { for }-1 \leq y<0 \\
\frac{6}{36} & \text { for } 0 \leq y<1 \\
\frac{5}{36} & \text { for } 1 \leq y<2 \\
\frac{4}{36} & \text { for } 2 \leq y<3 \\
\frac{3}{36} & \text { for } 3 \leq y<4 \\
\frac{2}{36} & \text { for } 4 \leq y<5 \\
\frac{1}{36} & \text { for } y \geq 5
\end{array} \quad, \quad\right. \text { F: Neither }\right.
\end{aligned}
$$

Solution. The range of Y is $\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$. The probability distribution for Y is as follows

$$
\begin{array}{c|ccccccccccc}
y & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline P(Y=y) & 1 / 36 & 2 / 36 & 3 / 36 & 4 / 36 & 5 / 36 & 6 / 36 & 5 / 36 & 4 / 36 & 3 / 36 & 2 / 36 & 1 / 36
\end{array}
$$

or

$$
P(Y=y)=\frac{6-|y|}{36}
$$

The cumulative distribution is therefore

$$
F(y)=P(Y \leq y)=\left\{\begin{array}{l}
0 \text { for } y<-5 \\
\frac{1}{36} \text { for }-5 \leq y<-4 \\
\frac{3}{36} \text { for }-4 \leq y<-3 \\
\frac{6}{36} \text { for }-3 \leq y<-2 \\
\frac{10}{36} \text { for }-2 \leq y<-1 \\
\frac{15}{36} \text { for }-1 \leq y<0 \\
\frac{21}{36} \text { for } 0 \leq y<1 \\
\frac{26}{36} \text { for } 1 \leq y<2 \\
\frac{30}{36} \text { for } 2 \leq y<3 \\
\frac{33}{36} \text { for } 3 \leq y<4 \\
\frac{35}{36} \text { for } 4 \leq y<5 \\
1
\end{array} \text { for } y \geq 54\right.
$$

4. Find the value of k, if one exists, such that $F(x)=\frac{x+2}{k}$ is a valid cumulative distribution function for a discrete random variable X which can take on the values $-2,-1,0,1$, or 2 .

Round to 4 decimal places if needed.
Solution. We require that

$$
1=F(2)=\frac{4}{k}
$$

which implies that $k=4$. Note that $\frac{x+2}{4} \geq 0$ for each $x \in\{-2,-1,0,1,2\}$.
5. A fair coin is tossed twice until it comes up with the same face on two consecutive tosses. The discrete random variable X counts the number of tosses that are made. What is the probability distribution function of X ?

$$
\begin{gathered}
\text { A: } P(X=x)=\frac{1}{2}, \quad \text { B: } P(X=x)=\left(\frac{1}{2}\right)^{x}, \quad \mathrm{C}: P(X=x)=\left(\frac{1}{2}\right)^{x-1}, \quad \mathrm{D}: P(X=x)=\left(\frac{1}{2}\right)^{x+1} \\
\text { E: } P(X=x)=\frac{1}{2 x}, \quad \mathrm{~F}: P(X=x)=\frac{\binom{x}{2}}{2^{x}}, \quad \mathrm{G}: P(X=x)=\frac{\binom{x}{2}}{2^{x+1}}, \quad \text { H: Neither }
\end{gathered}
$$

Solution. The range of X is the infinite set $\mathbb{N} \backslash\{1\}=\{2,3,4, \ldots\}$. The probability distribution for X is given by

$$
P(X=x)=\left(\frac{1}{2}\right)^{x-1}
$$

Explanation: Use the multiplication rule for independent events (an event being a single coin toss). To get a match after x tosses, the first $x-1$ tosses must alternate between heads and tails and the x th toss must match the $(x-1)$ th toss. The first toss doesn't matter, but the i th toss must be different from the $(i-1)$ th toss for $2 \leq i<x-1$; each occurs with probability $\frac{1}{2}$ and so the product is $\left(\frac{1}{2}\right)^{x-2}$. The x th toss matching the $(x-1)$ th toss occurs with probability $\frac{1}{2}$. Multiplying these two we get $\left(\frac{1}{2}\right)^{x-1}$.
6. Suppose the random variable Z has the following cumulative distribution function:

$$
F(z)= \begin{cases}0 & z<0 \\ \frac{1}{8} & 0 \leq z<1 \\ \frac{3}{16} & 1 \leq z<2 \\ \frac{3}{8} & 2 \leq z<4 \\ \frac{11}{16} & 4 \leq z<5 \\ \frac{23}{32} & 5 \leq z<6 \\ \frac{7}{8} & 6 \leq z<7 \\ 1 & 7 \leq z\end{cases}
$$

The probability distribution function of Z, is

$$
f(z)= \begin{cases}0 & z<0 \\ A & z=0 \\ \frac{1}{16} & z=1 \\ B & z=2 \\ \frac{5}{16} & z=4 \\ C & z=5 \\ \frac{5}{32} & z=6\end{cases}
$$

What is $A+B+C$?

Round to 4 decimal places if needed.
Solution. If $f(z)$ is the probability distribution function for Z then $f\left(z_{i}\right)=F\left(z_{i}\right)=F\left(z_{i-1}\right)$ (where the z_{i} are the range values for Z in order). This yields that

$$
f(z)= \begin{cases}0 & z<0 \\ \frac{1}{8} & z=0 \\ \frac{1}{16} & z=1 \\ \frac{3}{16} & z=2 \\ \frac{5}{16} & z=4 \\ \frac{1}{32} & z=5 \\ \frac{5}{32} & z=6\end{cases}
$$

Therefore

$$
A+B+C=\frac{1}{8}+\frac{3}{16}+\frac{1}{32}=\frac{11}{32}
$$

