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Notation

Important Sets

� Natural numbers: N = {1, 2, 3, . . . }.

� Integers: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.

� Rational numbers: Q =
{

a
b |a, b ∈ Z, b ̸= 0

}
.

� Real numbers: All decimal expansions of the form a1a2 . . . an.d1d2d3 . . .
(made up of single digit whole numbers from 0 to 9) where n ∈ N,

R = {a1a2 . . . an.d1d2d3 . . . |n ∈ N, ai, dj ∈ {0, 1, . . . , 9}}

� Complex numbers: C = {a+ bi|a, b ∈ R, i2 = −1}.

Greek Alphabet

(with common English pronunciations)

A, α - alpha (al-fah) B, β - beta (bay-tah)
Γ, γ - gamma (gam-mah) ∆, δ - delta (del-tah)

E, ϵ, (or ε) - epsilon (ep-si-lon) Z, ζ - zeta (zay-tah)
H, η - eta (ay-tah) Θ, θ - theta (thay-tah)

I, ι - iota (eye-oh-tah) K, κ - kappa (ka-pah)
Λ, λ - lambda (lam-dah) M, µ - mu (mew)

N, ν - nu (new) Ξ, ξ - xi (ksigh, or ksee)
O, o - omicron (oh-mi-cron) Π, π - pi (pie)

P, ρ - rho (row) Σ, σ - sigma (sig-mah)
T, τ - tau (tow as in cow) Υ, υ - upsilon (oop-si-lon)

Φ, ϕ, (or φ) - phi (fie as in hi, or fee) X, χ - chi (ki as in hi, or kee)
Ψ, ψ - psi (sigh, psigh, or psee) Ω, ω - omega (oh-may-gah)
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Chapter 1

Combinatorial Methods

1.1 Counting

1.1 Theorem (Counting Rule for Compound Events). If a process/operation/choice
consists of two steps where the first can be done in n1 ways and the second can
be done in n2 ways, then the entire process can be done in n1 · n2 ways.

1.2 Example. How many different meal options can be made from a choice of
13 appetizers and 25 main dishes?

Solution. There are 13× 25 = 325 different possible meals.

1.3 Example. How many outfits can be made with 23 shirts and 14 pairs of
pants?

Solution. There are 23× 14 = 322 different possible outfits (even though some
may not go very well together).

1.4 Example (Cartesian Product of Sets). If A and B are sets, we may form a
new set

A×B = {(x, y)|x ∈ A, y ∈ B}

of all (ordered) pairs of elements from from A and B.

If A and B are finite and have respectively m and n elements, then A × B
has mn elements.

1.5 Theorem (General Counting Rule for Compound Events). If a process con-
sists of k steps where each can be done in ni ways (for i = 1, 2, . . . , k) then the
entire process can be done in n1 · n2 · . . . · nk ways.

1.6 Example (Cartesian Product of Sets). Generalize the Cartesian product to
k sets, A1, . . . , Ak, by

A1 × · · · ×Ak = {(x1, . . . , xk)|xi ∈ Ai for i ∈ {1, . . . k}}.

3



4 CHAPTER 1. COMBINATORIAL METHODS

Thus if A1, . . . , Ak are finite and have A1, . . . , Ak elements respectively, then
A1, . . . , Ak has n1 · · ·nk elements.

1.7 Example. A room number in a certain university building is an ordered
triple (f, h, n) ∈ F ×H ×N where

F = {B1, 1, 2}, H = {A,B}, N = {1, 2, 3, 4}.

How many different room numbers are there?

Solution. There are

3× 2× 4 = 24

different room numbers.

The following tree diagram demonstrates the general counting rule for this
example.

·

B1

A

1
2
3
4

B

1
2
3
4

1

A

1
2
3
4

B

1
2
3
4

2

A

1
2
3
4

B

1
2
3
4

1.2 Permutations

1.8 Definition. An ordered arrangement of all elements of a set S, in which no
element occurs more than once, is called a permutation of S. Another way to
define this is that a permutation of set S is a bijection from S to itself.

1.9 Example. Let S = {a, b, c}. How many permutations of S are there?
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Solution. The possible ordered arrangements of S can be listed as

abc, acb, bac, bca, cab, cba

Without repetition, there are three choices for the first letter, leaving two for
the second letter, and one remaining for the third letter. The general counting
rule gives 3 · 2 · 1 = 6 permutations.

1.10 Theorem. The number of permutations of n distinct objects is

n! = n · (n− 1) · . . . · 3 · 2 · 1.

We define 0! = 1. The notation “n!” is read “n factorial”.

1.11 Exercise. Let S = {R,O, Y,G,B, I, V } be the set of seven rainbow
colours.

1. How many permutations of S are there?

2. How many different flags, composed of three vertical bars with
distinct colours (as depicted below) can be made from S?

1.12 Theorem. The number of permutations of n distinct objects taken r at a
time is

nPr =
n!

(n− r)!

Circular Permutations

1.13 Example. How many different circular tile patterns, such as the ones below,
can be made with the colours from S = {R,O, Y,G,B, I, V }? (no two dots are
the same colour)

These patterns are considered to be the same since they differ by a rotation:

R

O
Y

G

B

I
V

R
O

Y

G

B
I

V

R

O

Y

G
B

I

V

These patterns are different since they do not differ by a rotation:



6 CHAPTER 1. COMBINATORIAL METHODS

B
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V
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O

Solution. Take any permutation of the 7 colours and arrange it around the circle
a shown, starting at the top and going around counterclockwise (we have used
numbers instead of colours for convenience).

1

2

3

4
5

6

7

Suppose we arrange all 7! permutations of the colours in this way. If we
listed these, the same arrangement as the one above would appear 7 times but
rotated in 2π/7 angle increments. Here are the other 6:
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1

Since each circular arrangement appears 7 times, we divide the total number of
7! permutations by 7 to get the number of different circular permutation. Thus
there are

7!

7
= 6! = 720

different tile patterns we could make.

This strategy can also be used to count the number of different coloured-
bead necklaces that can be made with 7 different colours of beads, using one of
each colour. However, when a bead necklace is flipped over it reverses the order
of the beads. We then consider two necklace patterns to be the same if they
differ by a rotation (just as above) or if the beads appear in the reverse order.
It follows that there are

7!

7 · 2
=

6!

2
= 360
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different bead necklaces that can be made using 7 different colours of beads,
using one of each colour.

The following theorem can be used to count the number of different tile
patterns such as in the example above. It also counts the number of different
ways to seat people at a round table, so that two seating arrangements are
considered the same when every person has the same neighbor to their right
(and left) even though their position at the table may differ by a rotation. The
proof of this theorem follows from the example above.

1.14 Theorem (Circular Permutations). The number of permutations of n dis-
tinct objects arranged in a circle is (n− 1)!.

1.15 Example. How many different ways can we seat 4 people, Alice, Bob, Celia
and Dan, at a round table? (Again “different” means they don’t differ by a
rotation. )

Solution. By the theorem we see that there are

(4− 1)! = 3! = 6

different ways to seat them.

Here is another way to view the solution to this problem. Fix Alice’s position
at the table, and then arrange the other 3 people at the remaining 3 seats. Fixing
Alice’s position prevents repeating arrangements by rotation. There are 3! = 6
ways to arrange the 3 others at the 3 seats, as seen below.

1:

Alice Bob

Dan Celia 2:

Alice Bob

Celia Dan 3:

Alice Celia

Dan Bob

4:

Alice Celia

Bob Dan 5:

Alice Dan

Bob Celia 6:

Alice Dan

Celia Bob

Round-Robin Tournament

A round-robing tournament is one where each person (or each team) plays every
other team exactly once. To organize a round-robin tournament, think of seating
people at long rectangular table, with the same number of chairs on the two long
sides. Fix one position at the table (say at the corner) and cycle the other players
clockwise. Matches occur between people sitting across from one another. If
there is an odd number of players, have one empty seat for a “rest” match.
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1.16 Example. Here is an example of a round-robin tournament with four play-
ers, and hence three rounds:

1:

Alice Bob

Dan Celia 2:

Alice Dan

Celia Bob 3:

Alice Celia

Bob Dan

Permutations with Repeated Elements

1.17 Example. How many different permutations of the word “sassy” are there?

Solution. Here is a list of the different “words” we can make with these letters.

asssy, assys, asyss, aysss, sassy
sasys, sayss, ssasy, ssays, sssay
sssya, ssyas, ssysa, syass, sysas
syssa, yasss, ysass, yssas, ysssa

In order to count these without having to list them all, index each “s” to get the
set

{a,s1,s2,s3,y}.

There are 5! permutations of these 5 distinct objects. In each permutation, the
3! arrangements of s1,s2,s3 give the same word. e.g. the following are the same:

s1as2s3y, s1as3s2y, s2as1s3y, s2as3s1y, s3as1s2y, s3as2s1y

Therefore there are 5!
3! = 20 different permutations of the word “sassy”

1.18 Theorem (Permutations with Repeated Elements). The number of permu-
tations of n objects of which n1 are of one kind, n2 are of a second kind, . . . ,
nk are of a kth kind and n = n1 + n2 + · · ·+ nk is

n!

n1! · n2! · · · · · nk!
.

1.19 Exercise. How many different 6-digit numbers can be formed with
the single digits 1, 2, 2, 3, 3, 3?
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1.3 Combinations

1.20 Definition. A combination of n objects taken r at a time is any subset of
size r taken from a set of size n. The order of the selection does not matter.

Note that in a locker “combination” the order does matter, making it a
permutation.

1.21 Example. A photographer is allowed to choose three photos to display at
an upcoming art exhibit. How many possible arrangements can be made from
a selection of six photos.

Solution. Choosing the pictures in order, there are 6P3 = 6 · 5 · 4 = 120 per-
mutations. Each set of three appears 3! = 6 times but in a different ordering.
Therefore if we ignore order (i.e. consider different orderings of the same 3 pic-
tures to be the same exhibit) there are 120

6 = 20 ways to choose three photos
from six.

1.22 Theorem. The number of ways to choose r objects from n distinct objects
is (

n

r

)
=

nPr

r!
=

n!

r!(n− r)!

for r = 0, 1, . . . , n. The notation
(
n
r

)
, also written nCr, is read “n choose r”.

1.23 Example. In the card game cribbage, one pair scores two points. How many
points are scored with four nines?

9♠ 9♡ 9♢ 9♣

Solution. There are (
4

2

)
=

4!

2!2!
=

24

4
= 6

possible pairs of nines for a total of 2 · 6 = 12 points.

1.4 Partitions

1.24 Definition. A partition of a set S is an indexed collection of nonempty
subsets S1, . . . , Sk of S such that

(i) S = S1 ∪ · · · ∪ Sk, and

(ii) Si ∩ Sj = ∅ for all i, j ∈ {1, . . . , k}, i ̸= j.

(in general a partition may be infinite).

The order within each subset Si does not matter, but the ordering of the
subsets themselves does matter.
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1.25 Example. There are 12 partitions of {a, b, c, d} into three subsets with two,
one and one elements respectively:

{a, b}, {c}, {d} {a, b}, {d}, {c}, {a, c}, {b}, {d}, {a, c}, {d}, {b}

{a, d}, {b}, {c} {a, d}, {c}, {b}, {b, c}, {a}, {d}, {b, c}, {d}, {a}

{b, d}, {a}, {c} {b, d}, {c}, {a}, {c, d}, {a}, {b}, {c, d}, {b}, {a}

1.26 Exercise. Offices A and B have 6 desks each, and offices C and D
have 4 desks each. In how many ways can 20 grad students be put into
these 4 office offices? (it doesn’t matter who sits at what desk within an
office)

1.27 Theorem. The number of ways in which n distinct objects can be parti-
tioned into k subsets, with n1 objects in the first subset, n2 in the second,. . . ,
nk in the kth, is (

n

n1, n2, . . . , nk

)
=

n!

n1! · n2! · . . . · nk!
.

*note n1 + · · ·+ nk = n.

1.5 Binomial Coefficients

Powers of a binomial x + y, are computed using properties of real numbers
(distributivity, associativitiy, commutativity). e.g.

(x+ y)2 = (x+ y)(x+ y)

= (x+ y)x+ (x+ y)y

= xx+ yx+ xy + yy

= x2 + 2xy + y2.

Expanding (x + y)n in this way for large n is impractical. Instead we can
compute the coefficients of each xkyn−k term in the result with counting tech-
niques.

1.28 Example. Here is the expansion of (x+ y)3,

(x+ y)3 = (x+ y)(x+ y)(x+ y)

= xxx+ xxy + xyx+ xyy + yxx+ yxy + yyx+ yyy

= x3 + 3x2y + 3xy2 + y3.

Each term in the second line is obtained by choosing one of either x or y
from each of the 3 factors. Below, the letters in boxes are chosen to form the
product:
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xxx ↭ ( x + y)( x + y)( x + y),

xxy ↭ ( x + y)( x + y)(x+ y ),

xyx ↭ ( x + y)(x+ y )( x + y),

yxx ↭ (x+ y )( x + y)( x + y),

xyy ↭ ( x + y)(x+ y )(x+ y )

yxy ↭ (x+ y )( x + y)(x+ y )

yyx ↭ (x+ y )(x+ y )( x + y)

yyy ↭ (x+ y )(x+ y )(x+ y )

In summary, we choose k factors (of the three) to provide y to get a x3−kyk

term for k = 0, 1, 2, 3. For example, there are(
3

2

)
= 3

ways to obtain an xy2 term by choosing y from two of the factors and x from
the remaining one.

1.29 Theorem (The Binomial Theorem). For n ∈ N

(x+ y)n =

n∑
r=0

(
n

r

)
xn−ryr.

The numbers
(
n
r

)
are called binomial coefficients.

Choosing r things from n things indirectly chooses n − r things to leave
behind. This demonstrates the next theorem.

1.30 Theorem. For n ∈ N and r = 0, 1, . . . , n(
n

r

)
=

(
n

n− r

)
.

1.31 Exercise. Verify this theorem by using the definitions of the right
and left sides of the equation, and show that

(x+ y)n =

n∑
r=0

(
n

r

)
xn−ryr =

n∑
r=0

(
n

r

)
xryn−r.

Binomial coefficients can be arranged in the formation below which is known
as Pascal’s Triangle. The first seven rows of Pascal’s triangle are shown below.
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(
0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)(
5
0

) (
5
1

) (
5
2

) (
5
3

) (
5
4

) (
5
5

)(
6
0

) (
6
1

) (
6
2

) (
6
3

) (
6
4

) (
6
5

) (
6
6

)
Each row of the triangle contains lists all

(
n
r

)
for a fixed n and r = 0, . . . , n.

Evaluating these reveals an interesting pattern; each number in the triangle is
the sum of the two adjacent numbers in row above.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

The next theorem proves that this pattern in Pascal’s Traingle is not a
coincidence.

1.32 Theorem. For n ∈ N and r = 0, 1, . . . , n− 1(
n

r

)
=

(
n− 1

r

)
+

(
n− 1

r − 1

)
.

Proof. Proving this theorem by algebraic manipulation is straightforward, how-
ever we will demonstrate another proof strategy here which is useful in combi-
natorics. We will equate coefficients of like powers of x for two equal polynomial
expressions.

Consider,

(1 + x)n = (1 + x)(1 + x)n−1 = (1 + x)n−1 + x(1 + x)n−1.

Both sides are polynomials in x, and two polynomials are equal if and only
they have the same coefficients, so we may equate coefficients of xr for any
r = 0, 1, . . . , n.

On the left, the coefficient of xr is
(
n
r

)
(by binomial theorem).

On the right, the coefficient of xr in (1+x)n−1 is
(
n−1
r

)
, and in x(1+x)n−1,

the coefficient on xr is
(
n−1
r−1

)
.
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Thus
(
n
r

)
=
(
n−1
r

)
+
(
n−1
r−1

)
.

It makes sense to define
(
n
r

)
= 0 when r > n. Using this we have the

following identity.

1.33 Theorem. For m,n, k ∈ N,

k∑
r=0

(
m

r

)(
n

k − r

)
=

(
m+ n

k

)
.

Proof. Using the same proof strategy as above, consider

(1 + x)m+n = (1 + x)m(1 + x)n

viewing left and right hand sides as polynomials in x. Now find the coefficient
of xk on both sides.

1.34 Exercise. Write the details for the proof of this theorem.

Multinomial Coefficients

The expansion of (x1 + x2 + · · ·+ xk)
n, a generalization of a binomial called a

multinomial , is the sum of all monomials xr11 x
r2
2 · · ·xrkk where r1 + · · ·+ rk = n.

For example

(x1 + x2 + x3)
4 = x41 + 4x31x2 + 4x31x3 + 6x21x

2
2 + 12x21x2x3 + 6x21x

2
3 + 4x1x

3
2

+ 12x1x
2
2x3 + 12x1x2x

2
3 + x42 + 4x32x3 + 6x22x

2
3 + 4x2x3 + x43

1.35 Theorem. The coefficient of xr11 x
r2
2 · · ·xrkk in (x1 + x2 + · · ·+ xk)

n is(
n

r1, r2, . . . , rk

)
=

n!

r1! · r2! · . . . · rk!
.

Proof. Each exponent is a different partition of n into k subsets and so the
theorem on partitions applies.

1.36 Remark. Notice that the multinomial coefficient(
n

r1, r2, . . . , rk

)
=

n!

r1! · r2! · . . . · rk!
,

which we interpreted as counting the number of partitions of n objects into k
subsets, also gives the number of words that can be made with n letters of which
there are ri copies of letter xi, for each i = 1, . . . , k.
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1.37 Exercise. What the is coefficient of x21x
2
2x

3
4 in the expansion of

(x1 + x2 + x3 + x4)
7?

1.38 Exercise. Give the expansion of (x1 + x2 + x3 + x4)
4.



Chapter 2

Probability

Mathematics is used to model real world phenomena. Here are two classes of
model.

Deterministic model (ideal situation): Predicts the outcome of an experi-
ment with certainty based on given initial conditions. e.g. velocity of a falling
object

v = gt.

Probabilistic, or stochastic, model (randomness): When the same initial con-
ditions can lead to a variety of outcomes, these models provide a value (proba-
bility) to the possible outcomes. e.g. rolling a die results in one of six numbers
facing up.

Assigning each outcome the value 1
6 is one way to model this.

Classical Probability Concept

When there are N possible (equally likely) outcomes of which n are considered
successful, then the probability of a success is the ratio n

N .

2.1 Example. Some examples of the classical probability concept: The proba-
bility of,

� tossing tails with a balanced coin: 1
2

� drawing an ace from deck of cards: 4
52

� rolling either 3 or 5 with a six-sided die: 2
6

� rolling a total of 1 with a pair of dice: 0

� landing on red in roulette: 18
38

These values describe the frequency of a successful outcome; the proportion
of time the event occurs in the long run.

15
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2.1 Sample Spaces

The set of all possible outcomes of an experiment is called the sample space.

2.2 Example.
Experiment Sample space

single coin toss {H,T}

roll of two dice {(d1, d2)|d1, d2 ∈ {1, 2, 3, 4, 5, 6}}

sum of two dice {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

drawing a card all (r, s) with r ∈ {2, . . . , 10, J,Q,K,A}
and s ∈ {♠,♡,♢,♣}

three coin tosses {HHH,HHT,HTH, THH,HTT, THT, TTH, TTT}

Deck of Cards

Playing cards will be used in several examples, and it will be good to be familiar
with them. A standard deck of 52 playing cards is organized into

� 4 suits: clubs - ♣, diamonds - ♢, hearts - ♡, spades - ♠

� 13 ranks: A (ace), 2, 3, 4, 5, 6, 7, 8, 9, 10, J (jack), Q (queen), K (king)

2.3 Example (Blackjack). In the card game Blackjack (a.k.a. Twenty-one), aces
are worth 1 or 11, jacks, queens, and kings are worth 10, and all other cards are
worth their face value (2-9). According to the rules of classic probability, what
is the probability of drawing two cards from a deck of 52 whose sum is 21? One
example would be the hand J♠ A♡.

All previous examples had finite sample spaces. The following experiments
have infinite sample spaces.



2.2. EVENTS 17

2.4 Example. Some examples of experiments with infinite sample spaces.

� Tossing a coin until heads is reached:

{H,TH, TTH, TTTH, TTTTH, . . . }

� Playtime for two AA alkaline batteries in a Wii remote:

{t hours|t ∈ [0, 50]}

� Actual length of a non-pointed heavy hex bolt of nominal length 5 inches,
and nominal size 3/8 inches:

{ℓ inches|ℓ ∈ [4.9, 5.06]}

Continuous and Discrete Sample Spaces

There is an important distinction between the sample spaces in the previous
example; the outcomes of the first example (coin toss) may be listed, whereas
the outcomes in the other two belong to a continuum of values.

Discrete sample space: has only finitely many, or a countably infinite number
of elements.

Continuous sample space: is an interval in R, or a product of intervals lying
in Rn.

The important distinction is how probabilities are assigned.

2.2 Events

While individual elements of a sample space are called outcomes, subsets of a
sample space are called events. If the outcome of an experiment lies in an event,
we say that event has occurred.

2.5 Example. Experiment: Tossing a coin three times.
Sample space: {HHH,HHT,HTH, THH,HTT, THT, TTH, TTT}
Event A: Getting at least two heads {HHH,HHT,HTH, THH}
Event B: Getting exactly two tails {HTT, THT, TTH}
Event C: Getting two consecutive heads {HHH,HHT, THH}
Event D: Getting three consecutive heads {HHH}

2.6 Example. Experiment: Spinning a probability spinner.
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Sample space: {θ degrees|θ ∈ [0, 360)}

Event A: Landing between 90 and 180 degrees, [90, 180]
Event B: Landing either between 45 and 90 degrees or between 270 and 315
degrees, [45, 90] ∪ [270, 315]
Event C: Landing precisely on 180 degrees.

2.7 Example. Experiment: Dropping a pencil head first into a rectangular box.
Sample space: All points on the bottom of the box.

Event A:

A

Box

Event B:

B

Box

Event A ∩B:

A B

Box

(The event occurs when the pencil lands in shaded region.)

Union, Intersection, Complement

Let A and B be events in sample space S; i.e. A and B are subsets of a set S.

The union of A and B is the set of outcomes that is in either A or B or
both. Symbolically,

A ∪B = {x ∈ S|x ∈ A or x ∈ B}.

The intersection of A and B is the set of outcomes that is in both A and B.

A ∩B = {x ∈ S|x ∈ A and x ∈ B}.

The complement of A in S is the set of outcomes in S that are not in A.

A′ = {x ∈ S|x ̸∈ A} = S \A.
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Venn Diagrams

A Venn diagram is a visual depiction of subsets of some “universal” set. Subsets
are represented (typically) by disks lying within a rectangle representing the
universal set. Sets of interest are represented by shaded regions.

A B

A ∪B

S

A B

A ∩B

S

A B

A′

S

In the pencil dropping example, Venn diagrams gave a literal representation
of the events in that experiment, but these representations can be used in more
general situations to help visualize relationships between different subsets of a
sample space.

Mutually Exclusive Events

A set which has no elements is called the empty set , denoted ∅ .

2.8 Example. Experiment: Rolling two dice.
Event A: Rolling at least one six,
A = {(d1, 6), (6, d2)|d1, d2 ∈ {1, 2, 3, 4, 5, 6}}
Event B: Sum of dice equals 4,
B = {(1, 3), (2, 2), (3, 1)}.
Event C: Rolling at least one six and having a sum of 4,
C = A ∩B = ∅.

A B

A ∩B = ∅

S

Sets with empty intersection are called disjoint, and the events in this case
are called mutually exclusive.

Algebra of Sets

Let A,B and C be subsets of a universal set S.

� Idempotent laws:
A ∪A = A, A ∩A = A

� Associative laws:
(A ∪B) ∪ C = A ∪ (B ∪ C), (A ∩B) ∩ C = A ∩ (B ∩ C)
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� Commutative laws:
A ∪B = B ∪A, A ∩B = B ∩A

� Distributive laws:
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C), A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

� Identity laws:
A ∪ ∅ = A, A ∪ S = S, A ∩ S = A, A ∩ ∅ = ∅

� Complement laws:
(A′)′ = A, A ∪A′ = S, A ∩A′ = ∅, S′ = ∅, ∅′ = S

� DeMorgan’s Laws:
(A ∪B)′ = A′ ∩B′, (A ∩B)′ = A′ ∪B′

2.9 Example. Use Venn diagrams to verify the distributive law A ∪ (B ∩ C) =
(A ∪B) ∩ (A ∪ C).

Solution. The left side of the equation is the union of A and B:

A

B

C

A

S

A

B

C

B ∩ C

S

A

B

C

A ∪ (B ∩ C)

S

The right side of the equation is the intersection of A ∪B and A ∪ C.

A

B

C

A ∪B

S

A

B

C

A ∪ C

S

A

B

C

(A ∪B) ∩ (A ∪ C)

S

Since the resulting diagrams are the same, we conclude that the equation
holds.

While Venn diagrams are useful for intuition, they should not be used for a
rigorous proof. Below is a proof of the distributive law using definitions of the
sets involved.

Proof. Let x ∈ A ∪ (B ∩ C). Then x ∈ A or x ∈ (B ∩ C).
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� If x ∈ A then x ∈ A ∪B and x ∈ A ∪ C, so x ∈ (A ∪B) ∩ (A ∪ C).

� If x ∈ B ∩C then x ∈ B and x ∈ C so x ∈ A∪B and x ∈ A∪C, and thus
x ∈ (A ∪B) ∩ (A ∪ C).

This shows that if x ∈ A ∪ (B ∩ C) then x ∈ (A ∪ B) ∩ (A ∪ C), and hence
A ∪ (B ∩ C) ⊂ (A ∪B) ∩ (A ∪ C).

Now suppose y ∈ A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). Then y ∈ A ∪ B and
y ∈ A ∪ C.

� If y ̸∈ A we must have y ∈ B and y ∈ C, so y ∈ B ∩ C.

� Otherwise y ∈ A.

In either case y ∈ A∪(B∩C), and it follows that (A∪B)∩(A∪C) ⊂ A∪(B∩C).

A ∪ (B ∩ C) ⊂ (A ∪B) ∩ (A ∪ C) and (A ∪B) ∩ (A ∪ C) ⊂ A ∪ (B ∩ C)
implies A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

2.10 Exercise. Use Venn diagrams to verify DeMorgan’s Laws.

(A ∪B)′ = A′ ∩B′, (A ∩B)′ = A′ ∪B′

2.3 The Probability of an Event

A probability , or probability measure, is a function P which maps events in the
sample space S to real numbers.

In order to assign probabilities in a meaningful way, P must satisfy the
following called the postulates (or axioms) of probability.

P1. The probability of any event A in S is a nonnegative real number, i.e.
P (A) ≥ 0.

P2. P (S) = 1.

P3. If A1, A2, A3, . . . , is a finite or infinite sequence of (pairwise) mutually
exclusive events in S then

P (A1 ∪A2 ∪A3 ∪ · · · ) = P (A1) + P (A2) + P (A3) + · · ·

(P is countably additive)
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Interpreting a probability as a frequency, or a proportion of time, it makes
sense that P (A) ≥ 0; in fact we will show that 0 ≤ P (A) ≤ 1 for any event A.

P2 says that the probability that the outcome of the experiment lies in S
must be assigned value 1. Since this is certain to happen, we interpret P (A) = 1
as “A happens 100 percent of the time.”

P3 is for consistency. For example, if events A1 and A2 share no common
outcomes, then the probability that either event occurs, P (A1 ∪A2), is the sum
of their individual probabilities.

2.11 Remark. A technical detail has been overlooked in the postulates of prob-
ability presented above. In a discrete sample space S, an “event” can be any
subset of S, however in the continuous case one has to be more careful about
which subsets of S are allowed as events. A precise definition for these allowable
events comes in a course on measure theory. In this course we won’t require that
level of detail; i.e. the subsets we assign probabilities to will be allowable events.

2.12 Example. Consider the experiment of rolling a single 6-sided die. The
sample space is,

S = { , , , , , }

Each outcome in S is its own event, call these A1, . . . , A6. Events A1, . . . , A6 are
mutually exclusive, and any event E in S is a union of these, for example let E =
A2∪A4∪A5. By the classical probability concept, P (E) = 3

6 (successes/number
of outcomes), and P (Ai) = 1

6 for each i. This P satisfies the postulates of
probability:

� P (B) ≥ 0 for any B ⊂ S.

� P (S) = 6
6 = 1.

� P3 is satisfied: by example P (E) = 3
6 = 1

6 + 1
6 + 1

6 = P (A2) + P (A4) +
P (A5).

2.13 Exercise.
S = { , , , , , }

Suppose we assigned probabilities to this die rolling experiment in a
different way. Using the same notation as before, for any event B specify
that

P (B) =
∑
Ai∈B

P (Ai), and

P (A1) =
1
2 , P (A2) =

1
4 , P (A3) =

1
8 ,

P (A4) = 0, P (A5) =
1
16 , P (A6) =

1
16

Are the postulates of probability still satisfied?
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2.14 Exercise. An experiment has four possible outcomes A,B,C,D that
are mutually exclusive. Explain why the following assignments of prob-
abilities are not permissible.

(a) P (A) = 0.12, P (B) = 0.63, P (C) = 0.45, P (D) = −0.20

(b) P (A) = 9
120 , P (B) = 45

120 , P (C) =
27
120 , P (D) = 46

120

2.15 Theorem. If A is an event in a discrete sample space S, then P (A) is the
sum of the probabilities of the individual outcomes (elements) of A.

(*Theorem assumes P is a probability measure, and hence satisfies the pos-
tulates)

2.16 Example. Experiment: Tossing a coin three times.
Sample space: {HHH,HHT,HTH, THH,HTT, THT, TTH, TTT}
Event A: Getting at least two heads {HHH,HHT,HTH, THH}
Event B: Getting exactly two tails {HTT, THT, TTH}
Event C: Getting two consecutive heads {HHH,HHT, THH}
Event D: Getting three consecutive heads {HHH}

2.17 Exercise. Assuming a balanced coin, i.e. equal likely heads or tails,
what are the probabilities of the events in the example above?

2.18 Exercise.
S = { , , , , , }

Suppose our six sided die is weighted so that each odd number is twice
as likely to occur than each even number.

What is the probability of rolling a number greater than 3?

What if instead each even number is four times as likely to occur than
each odd number?

Infinite Discrete Sample Spaces

When a sample space has countably infinite outcomes, probabilities must be
assigned via some rule/formula as opposed to listing them individually.

2.19 Example. Tossing a coin until heads is reached:

S = {H,TH, TTH, TTTH, TTTH, TTTTH, TTTTTH, . . . }.
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If Ai is the event of i flips, then P (Ai) = 1
2i defines a probability on S

(assuming countable additivity). From the geometric series formula we get P2:

P (S) =

∞∑
i=1

P (Ai) =

∞∑
i=1

1

2i
=

1
2

1− 1
2

= 1.

Brief note on infinite series:

� Sequence: countably infinite list of real numbers; s1, s2, s3, . . . .

e.g. 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

� Geometric sequence: terms occur in a common ratio r; a, ar, ar2, ar3 . . .

e.g. 4, 43 ,
4
9 ,

4
27 ,

4
81 , . . . . . .

� Partial sum of a sequence: Sn =

n∑
i=1

si = s1 + s2 + · · ·+ sn.

� Series: Limit of partial sums (if it exists); lim
n→∞

Sn =

∞∑
i=1

si.

� Partial sum geometric sequence: Gn = a+ ar + · · ·+ arn.

(1− r)Gn = (1− r)(a+ ar + ar2 + · · ·+ arn)

= (a+ ar + ar2 + · · ·+ arn)

− (ar + ar2 + ar3 + · · ·+ arn+1)

= a− arn+1

So Gn = a−arn+1

(1−r) (for r ̸= 1) .

� If −1 < r < 1 then lim
n→∞

rn = 0, and so it follows that

∞∑
i=0

ari = lim
n→∞

Gn =
a

1− r
.

� In the coin flipping example above, a = 1
2 and r = 1

2 .

2.20 Theorem. If an experiment has N equally likely outcomes and A is an event
made up of n of those outcomes then

P (A) =
n

N
.
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2.21 Example. A five-card poker hand dealt from a deck of 52 playing cards is
said to be a full house if it consists of three of a kind and a pair. For example:

8♠, J♠, 8♡, 8♣, J♢

If all the five-card hands are equally likely, what is the probability of being
dealt a full house?

Solution. The number of different full house hands similar to the one above, any
three 8’s and any two Jacks, is

(
4
3

)(
4
2

)
. (Ignores order in which they are dealt).

There are 13 possible choices for the three-of-a-kind card, leaving 12 possi-
bilities for the two-of-a-kind card. So the total number of full house hands is
13 ·

(
4
3

)
· 12 ·

(
4
2

)
.

In total there are
(
52
5

)
equally likely outcomes.

The probability of getting any full house is:

13 ·
(
4
3

)
· 12 ·

(
4
2

)(
52
5

) =
13 · 4 · 12 · 6(
52·51·50·49·48

5·4·3·2·1
) =

3744

2598960
≈ 0.00144

Rules of Probability

2.22 Theorem. Let S be a sample space with probability measure P , and let A
and B be events in S. Then

1. P (A) + P (A′) = 1, or equivalently P (A′) = 1− P (A).

2. P (∅) = 0.

3. If A ⊂ B then P (A) ≤ P (B).

4. 0 ≤ P (A) ≤ 1.

5. P (A ∪B) = P (A) + P (B)− P (A ∩B).

(think of the Venn diagrams)

Rule 5, and its generalizations, are call the inclusion-exclusion principle.

2.23 Example. What is the probability that at least two people out of a group
of r people have the same birthday for r ≤ 365 (ignoring leap years)?

Let A be the event that at least two people have the same birthday. There
are 365r possible birthday arrangements for r people.
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There are 365Pr = 365 · 364 · 363 · . . . · (365 − r + 1) ways that they could

have distinct birthdays so P (A′) = 365·364·363·...·(365−r+1)
365r

This means that P (A) = 1− P (A′) = 1− 365·364·363·...·(365−r+1)
365r .

For r = 23, P (A) ≈ 0.507.

2.24 Example. Suppose the probabilities are 0.86, 0.35, and 0.29, respectively,
that a family owns a laptop computer, a desktop computer, or both kinds. What
is the probability that a family owns either or both kinds of computer and what
is the probability that a family owns neither?

Let A be the event that family owns a laptop and B the event that a family
owns a desktop. Then

P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.86 + 0.35− 0.29 = 0.92.

The probability that a family owns neither is

P ((A ∪B)′) = 1− P (A ∪B) = 1− 0.92 = 0.08.

2.25 Theorem. If A,B and C are any three events in sample space S, then

P (A ∪B ∪ C) = P (A) + P (B) + P (C)

− P (A ∩B)− P (A ∩ C)− P (B ∩ C) + P (A ∩B ∩ C).

Again, this is known as the inclusion-exclusion principle. Similar rules can
be obtained for any finite number of sets.

2.4 Conditional Probability

2.26 Example. Mayoral candidate Alice receives 56 percent of the entire vote,
but only 47 percent of the female vote.

Let P (A) be the probability that a randomly selected person has voted for
Alice, and let P (A|F ) denote the probability that a randomly selected female
has voted for Alice. So

P (A) = 0.56 and P (A|F ) = 0.47

Value P (A|F ) is called the conditional probability of A relative to F , or the
conditional probability of A given F .

2.27 Example. Let A be the event of rolling 8 with two dice; Then P (A) = 5
36 ≈

0.1389.

Suppose we are given that the roll of die 1 is 3. Knowing this (i.e. given
that this event has occurred), what is the probability of rolling an 8?
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Let B = {(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6)}; the event that die 1 is 3.
Since these outcomes are equally likely prior to knowing die 1 is 3, they are still
equally likely given that B has occurred. So given B has occurred, each have
probability 1

6 (the other 30 outcomes have probability 0).

Therefore the probability of rolling an 8 given that die 1 is a 3 is P (A|B) =
1
6 ≈ 0.1667

In the example above, if B occurs, then in order for A to occur, the outcome
must lie in both A and B. Thus A ∩B becomes the event of interest, and B is
considered the new sample space.

A B

S

The conditional probability of A given B is the probability of A∩B relative
to the probability of B.

2.28 Definition (Conditional Probability). If A and B are events in S and
P (B) ̸= 0, then the conditional probability of A given B is

P (A|B) =
P (A ∩B)

P (B)
.

2.29 Example. Results of a survey of 50 car dealerships:

Good service Poor service
under warranty under warranty

In business 10 years or more 16 4
In business less than 10 years 10 20

If a person randomly chooses one dealership, what is the probability...

(a) ...they get one who provides good service under warranty?

(b) ...they get one who provides good service under warranty if they select
from dealers in business 10 years or more?

Solution. Assume all choices are equally likely. Let G be the event of getting
good service and T the event that a dealer has been in business 10 years or
more. Let n(A) denote the number of elements in event A.
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Then probability of getting good service is

P (G) =
n(G)

n(S)
=

16 + 10

50
= 0.52.

Restricting the random selection to T , we have n(T ) = 16 + 4 = 20 and n(G ∩
T ) = 16, so

P (G|T ) = P (G ∩ T )
P (T )

=

n(G∩T )
n(S)

n(T )
n(S)

=
16
50
20
50

=
16

20
= 0.80.

2.30 Example. A coin is tossed twice. Assuming all outcomes in the sample
space

S = {HH,HT, TH, TT}

are equally likely, what is the probability that both flips land on heads given
that...

(a) ...the first flip is heads?

(b) ...at least one flip is heads?

Solution. Let

A = {HH} - event that both flips are heads,

B = {HH,HT} even that first flip is heads,

C = {HH,HT, TH} - event that at least one flip is heads.

(a)

P (A|B) =
P (A ∩B)

P (B)
=
P ({HH})
P (B)

=
1
4
2
4

=
1

2
= 0.5.

(b)

P (A|C) = P (A ∩ C)
P (C)

=
P ({HH})
P (C)

=
1
4
3
4

=
1

3
≈ 0.333.

2.31 Example. A manufacturer of airplane parts knows from past experience
that the probability is 0.80 that an order will be ready for shipment on time,
and it is 0.72 that an order will be ready for shipment on time and will also be
delivered on time. What is the probability that such an order will be delivered
on time given that it was ready for shipment on time?



2.4. CONDITIONAL PROBABILITY 29

Ready Delivered

All parts shipped

Conditional Probability Multiplication Rule

2.32 Theorem (Multiplication Rule). If A and B are events in S and P (A) ̸= 0,
then

P (A ∩B) = P (A) · P (B|A).

i.e. The probability that both A and B will occur is the product of the
probability of A and the probability of B given A.

2.33 Example. A pot contains 8 red balls and 4 green balls. We draw 2 balls
without replacement. If each ball has an equally likely chance of being chosen,
what is the probability that both balls are red? (without replacement means
that the first ball is not returned to the pot before the second ball is drawn)

Solution. Let R1 be the event that ball 1 is red, and R2 be the event that ball
2 is red. Then R1 ∩R2 is the event that both are red.

Then using the multiplication rule

P (R1 ∩R2) = P (R1) · P (R2|R1).

For ball 1, P (R1) =
8
12 .

Since ball 1 is chosen red we have 7 remaining red balls and 4 green balls
and so P (R2|R1) =

7
11 . Thus

P (R1 ∩R2) = P (R1) · P (R2|R1) =
8

12
· 7

11
=

14

33
≈ 0.4242.

Since the the outcomes are equally likely, we could also have computed the
probability as the number of successful outcomes over total number of outcomes:

P (R1 ∩R2) =

(
8
2

)(
12
2

) =
28

66
=

14

33
≈ 0.4242.
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2.34 Example. Find the probabilities of randomly drawing two aces in succession
from an ordinary deck of 52 playing cards if we sample...

(a) without replacement.

(b) with replacement.

Solution. We will present a couple of different ways one can arrive at the same
answer.

(a) Let A1 be the event that card 1 is an ace, and A2 be the event that card
2 is an ace. Then A1 ∩A2 is the event that both are aces.

Since there are 4 aces (and outcomes are equally likely) P (A1) =
4
52 .

Given that the first card drawn is an ace, the probability of drawing an
ace for card 2, P (A2|A1), is

3
51 .

By the multiplication rule we have:

P (A1 ∩A2) = P (A1) · P (A2|A1) =
4

52
· 3

51
=

1

221
≈ 0.0045

without replacement.

Here is another way to look at this problem: View the sample space S as
the 52 ·51 possible outcomes, keeping track of the order in which the cards
are drawn; e.g (A♡,K♣) is different from (K♣, A♡).

Event A1 has 4 · 51 outcomes; all those in S where the first card is one of
the four aces.

Event A2 has 51 · 4 outcomes, and event A1 ∩A2 has 4 · 3 outcomes. Thus

P (A1 ∩A2) =
12

52 · 51
≈ 0.0045.

Of course we could have computed the same probability as

P (A1 ∩A2) =

(
4
2

)(
52
2

) =
6

1326
≈ 0.0045.

(counting this way ignores order drawn) with replacement.

(b) The sample space is different from part (a), but we will use the same
notation for events.

Again since there are 4 aces P (A1) =
4
52 .
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The probability of drawing an ace for card 2 given that card 1 is an ace
P (A2|A1), is also

4
52 , since that ace was put back.

By the multiplication rule we have:

P (A1 ∩A2) = P (A1) · P (A2|A1) =
4

52
· 4

52
=

1

169
≈ 0.0059

Alternative view: In this case the sample space S has 52 · 52 possible
outcomes, again keeping track of the order in which the cards are drawn.

Event A1 has 4 · 52 outcomes, event A2 has 52 · 4 outcomes, and event
A1 ∩A2 has 4 · 4 outcomes. Thus

P (A1 ∩A2) =
16

52 · 52
≈ 0.0059.

Since A ∩B ∩ C = (A ∩B) ∩ C) we have by the multiplication rule

P ((A ∩B) ∩ C)) = P (A ∩B) · P (C|A ∩B).

Applying the multiplication rule again to P (A ∩B) gives the following.

2.35 Theorem. If A,B and C are events in S and P (A ∩B) ̸= 0, then

P (A ∩B ∩ C) = P (A) · P (B|A) · P (C|A ∩B).

2.36 Example. A bushel of 126 apples contains 15 rotten ones. If three apples
are drawn chosen at random, what is the probability that all three are rotten?

If A1, A2, A3 are the events that the first, second and third (resp.) choice is
rotten, then

P (A1 ∩A2 ∩A3) = P (A1) · P (A2|A1) · P (A3|A1 ∩A2)

=
15

126
· 14

125
· 13

124

=
2730

1953000
≈ 0.0014.

2.5 Independent Events

2.37 Example. Suppose a coin is tossed twice. What is the probability of getting
tails on the second toss given that the first toss was tails?
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Surely the outcome of the second toss doesn’t depend on the what has pre-
viously come up. Indeed if S = {HH,HT, TH, TT}, T1 = {TH, TT}, and
T2 = {HT, TT} are the events of getting tails on flips 1, and 2 respectively,
then

P (T2|T1) =
P (T1 ∩ T2)
P (T1)

=
P ({TT})
P (T1)

=
1
4
2
4

=
1

2
= P (T2).

Similarly we see that P (T1|T2) = P (T1). In this case events T1 and T2 are called
independent.

Replacing P (B|A) with P (B) in the multiplication rule gives us the formal
definition of when A and B are considered independent events.

2.38 Definition. Events A and B are called independent if and only if

P (A ∩B) = P (A) · P (B).

They are otherwise called dependent . (we allow P (A) = 0 or P (B) = 0)

2.39 Example. In the initial coin toss example, the probability of getting two
consecutive tails is

P (T1 ∩ T2) =
1

4
=

1

2
· 1
2
= P (T1) · P (T2).

2.40 Example. Suppose a coin a tossed 3 times. Let
A = {HHH,HHT} - first two are H
B = {HHT,HTT, THT, TTT} - third always T
C = {HTT, THT, TTH} - exactly two T

(a) Show that A and B are independent.

(b) Show that B and C are dependent.

2.41 Example. In the example of drawing two aces without replacement

P (A1 ∩A2) =
12

52 · 51
̸= 4 · 51

52 · 51
· 51 · 4
52 · 51

= P (A1) · P (A2).

We see that events A1 and A2 are dependent.

However, in drawing two aces with replacement

P (A1 ∩A2) =
16

52 · 52
=

4 · 52
52 · 52

· 52 · 4
52 · 52

= P (A1) · P (A2)

events A1 and A2 (now considered in the replacement sample space) are inde-
pendent.

2.42 Theorem. If A and B are independent then so are A and B′.
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Proof. Since A = (A ∩B) ∪ (A ∩B′) we have

P (A) = P (A ∩B) + P (A ∩B′) (mutally exclusive events)

= P (A) · P (B) + P (A ∩B′) (A,B independent).

Rearrange this equation to get

P (A ∩B′) = P (A)− P (A) · P (B)

= P (A) · (1− P (B))

= P (A) · P (B′).

2.43 Definition. Events A1, A2, . . . , Ak are independent if and only if the prob-
ability of the intersection of any 2, 3, . . . , k of these is equal to the product of
their individual probabilities.

2.44 Example. Three events A1, A2, A3 are independent if and only if

P (A1 ∩A2) = P (A1) · P (A2)

P (A1 ∩A3) = P (A1) · P (A3)

P (A2 ∩A3) = P (A2) · P (A3)

P (A1 ∩A2 ∩A3) = P (A1) · P (A2) · P (A3)

2.45 Exercise. Let S = {a, b, c, d} be the sample for space for an experi-
ment with equally likely outcomes and define events

A = {a, d}, B = {b, d}, C = {c, d}.

Show that A,B,C are pairwise independent, but not independent.

2.46 Exercise. Find the probabilities of getting

(a) three heads in three random tosses of a balanced coin;

(b) four sixes and then another number in five random rolls of a bal-
anced die.

2.6 Rule of Total Probability

2.47 Example. The completion of a construction job may be delayed because
of a strike. The probabilities are 0.60 that there will be a strike, 0.85 that the
construction job will be completed on time if there is no strike, and 0.35 that
the construction job will be completed on time if there is a strike. What is the
probability that the construction job will be completed on time?
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Solution.

On time

S
Strike No Strike

Let A be the event that the job will be completed on time, B the event of a
strike, therefore B′ is the event of no strike.

We want P (A) and are given

P (B) = 0.60, P (A|B) = 0.35, P (A|B′) = 0.85.

Using the fact that A = (A∩B)∪ (A∩B′) (union of mutually exclusive events)
and the multiplicative rule, we have

P (A) = P (A ∩B) + P (A ∩B′) = P (B) · P (A|B) + P (B′) · P (A|B′).

Thus P (A) = (0.6)(0.35) + (0.4)(0.85) = 0.55.

We can generalize the idea above to obtain a formula for the probability
of any event, given that we have a partition of our sample space into event of
known probability.

A

S

B1 B2 B3 Bk
...

(a partition of a set S is a collection of pairwise disjoint subsets whose union is
S)

2.48 Theorem (Rule of Total Probability). Suppose events B1, B2, . . . Bk form
a partition of the sample space S, and P (Bi) ̸= 0 for i = 1, . . . , k. Then for any
event A in S,

P (A) =

k∑
i=1

P (Bi) · P (A|Bi).

2.49 Example. Three machine M1,M2 and M3 produce respectively 40, 10 and
50 percent of the items in a factory. The percentage of defective items produced
by each respective machine is 2, 3 and 4 percent. Find the probability that a
randomly selected item from the factory is defective.
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Let D denote the event that a randomly selected item is defective, then

P (D) = P (M1) · P (D|M1) + P (M2) · P (D|M2) + P (M3) · P (D|M3)

= (0.40)(0.02) + (0.10)(0.03) + (0.50)(0.04)

= 0.031.

Bayes’ Theorem

With reference to the example above one might ask: If the randomly selected
item is defective, what is the probability that the item was produced by

(a) machine M1,

(b) machine M2, or

(c) machine M3?

This question is answered by Bayes’ Theorem.

2.50 Theorem (Bayes’ Theorem). Suppose events B1, B2, . . . Bk form a partition
of the sample space S, and P (Bi) ̸= 0 for i = 1, . . . , k. Then for any event A in
S with P (A) ̸= 0

P (Br|A) =
P (Br) · P (A|Br)∑k
i=1 P (Bi) · P (A|Bi)

for r = 1, . . . , k.

Proof.

P (Br|A) =
P (Br ∩A)
P (A)

(by definition)

=
P (Br) · P (A|Br)

P (A)
(multiplication rule)

=
P (Br) · P (A|Br)∑k
i=1 P (Bi) · P (A|Bi)

(rule of total probability)

2.51 Example. Three machine M1,M2 and M3 produce respectively 40, 10 and
50 percent of the items in a factory. The percentage of defective items produced
by each respective machine is 2, 3 and 4 percent. If the randomly selected item
is defective, what is the probability that the item was produced by

(a) machine M1,

(b) machine M2, or

(c) machine M3?
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Solution. Using Bayes’ Theorem,

(a)

P (M1|D) =
P (M1) · P (D|M1)

P (D)
=

(0.40)(0.02)

0.031
≈ 0.2581

Parts (b) and (c) are similar.



Chapter 3

Probability Distributions and
Densities

The raw outcomes of a given probability experiment can contain a wealth of
information, however we may only be interested in a few specific attributes.

For example

� In rolling two dice, we might only care about the sum of the outcome, and
not the individual values.

� In a random sample of bottled water, we might want to know the volume
of a certain chemical, but not the price.

� In a randomly chosen family, we might want to know their joint income,
but not their address or hobbies.

3.1 Random Variables

Let S be a sample space with a probability measure. A random variable is a
function X : S → R, which maps the outcomes in the sample space to real
numbers. The output of a random variable is something we can measure.

RS

X

Random variables are defined when we want to focus on a particular property
of the outcomes of an experiment. More than one random variable can be defined
for a given sample space.

37



38 CHAPTER 3. PROBABILITY DISTRIBUTIONS AND DENSITIES

Capital letters, e.g. “X”, denote random variables, and their lower case
letter, e.g. “x”, for particular values that X can take.

3.1 Example. Earlier we mentioned the experiment of spinning a probability
spinner, and gave sample space {θ degrees|θ ∈ [0, 360)}.

However, the actual sample space could include more information, such as
multiple rotations, angular velocity at time t, elapsed time, the colour it landed
on, etc.

A random variable focuses on one property of the outcome that can be
assigned a real number. Examples of random variables:

� X1: resting position (degrees), outputs values in [0, 360).

� X2: resting position (radians), outputs values in [0, 2π).

� X3: angle of rotation (radians), outputs values in (−∞,∞).

� X4: number of full rotations, can take values 0, 1, 2, 3, . . . .

� X5: points for each coloured space; e.g. 1-red, 2-blue,...

3.2 Example. Two socks are selected at random and removed in succession from
a drawer containing five brown socks and three green socks.

List the elements of the sample space, the corresponding probabilities, and
the corresponding values x of the random variable X, where X is the number
of brown socks selected.

Solution.

Element of
sample space Probability x

BB 20
56 2

BG 15
56 1

GB 15
56 1

GG 6
56 0

We write: P (X = 2) = 20
56 , P (X = 1) = 30

56 , P (X ≤ 1) = 36
56 .

3.3 Exercise. Three balls are randomly chosen (without replacement)
from a bag of 20 balls numbered 1-20. We bet that at least one of the
numbers drawn is as large, or larger than 17. What is the probability of
winning the bet?

Outcomes in the sample space are subsets of three numbered balls, and they
are all equally likely to occur.
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Let random variableX denote the largest number of the three selected. Thus
X takes values 3, 4, . . . , 20, and we want P (X ≥ 17).

By the rule of equal probability we have for i = 3, . . . , 20,

P (X = i) =

ball i︷︸︸︷(
1

1

)
·

any two < i︷ ︸︸ ︷(
i− 1

2

)
(
20
3

) =

(
i−1
2

)
1140

.

P (X ≥ 17) = P (X = 17) + P (X = 18) + P (X = 19) + P (X = 20).

=
120

1140
+

136

1140
+

153

1140
+

171

1140
≈ 0.5088

Discrete Random Variable

Recall that the set of all possible output values of a function is called its range.

If the range of a random variable X is a finite or countably infinite set, then
we say that X is a discrete random variable.

In contrast, a continuous random variables is one whose range is a continuum
of values, like an interval or a union of intervals in R. We will deal with this
type later. The important difference to notice is in how the probabilities are
assigned.

3.2 Probability Distributions

, , , , , ,
, , , , , ,
, , , , , ,
, , , , , ,
, , , , , ,
, , , , , .

3.4 Example. Experiment: Rolling two dice

Let random variableX denote the sum of a roll. The range ofX is {2, 3, . . . , 12}.
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Knowing that each outcome in the sample space has probability 1
36 , we can

automatically find the probability that X takes on any value in its range. e.g.
P (X = 7) = 6

36 , P (X = 11) = 2
36 .

x P (X = x)
2 1/36
3 2/36
4 3/36
5 4/36
6 5/36
7 6/36
8 5/36
9 4/36
10 3/36
11 2/36
12 1/36

This information is summarized in the table.

It is sometimes preferable to have a formula describing these probabilities
instead of simply listing them individually. i.e. we would like an algebraic
expression which gives P (X = x) for each value x in the range of random
variable X. In this case the probabilities are given by the expression

f(x) =
6− |x− 7|

36
.

(verify this by substitution) We may not always be able to obtain an expression
like this.

If X is a discrete random variable, the function f given by

f(x) = P (X = x)

for each x in the range of X, is called the probability distribution of X.

3.5 Theorem. A function f is allowable as a probability distribution for discrete
random variable X if and only if its values, f(x), satisfy

1. f(x) ≥ 0 for any x,

2.
∑
x

f(x) = 1, (sum taken over all x in the range of X)

3.6 Example. Let X be the number heads obtained in tossing a balanced coin
4 times.

(a) What is the range of X?

(b) What is P (X = x) for each x in the range of X?

(c) Find a formula for the probability distribution of X.
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Solution. (a) The range of X is {0, 1, 2, 3, 4}.

(b) Individual probabilities:
x P (X = x)
0 1/16
1 4/16
2 6/16
3 4/16
4 1/16

(this is also called the probability distribution of X)

(c) The probability distribution of X is also given by the formula

f(x) =

(
4
x

)
16

for x = 0, 1, 2, 3, 4.

, , , , , ,
, , , , , ,
, , , , , ,
, , , , , ,
, , , , , ,
, , , , , .

3.7 Example. Return to the dice rolling experiment.

Let Y be the maximum that either die shows in a single roll; Y (a, b) =
max(a, b), for example Y (3, 5) = 5.

(a) What is the range of Y ?

(b) What is P (Y = y) for each y in the range of Y ?

(c) Find a formula for the probability distribution of Y .

Solution. (a) The range of Y is {1, 2, 3, 4, 5, 6}.

(b) Probability distribution:
y P (Y = y)
1 1/36
2 3/36
3 5/36
4 7/36
5 9/36
6 11/36
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(c) The probability distribution of Y is also given by

g(y) =
2y − 1

36

for y = 1, 2, 3, 4, 5, 6.

3.8 Exercise. Check whether the function given by

f(x) =
x+ 2

25
,

for x = 1, 2, 3, 4, 5 can serve as the probability distribution of a discrete
random variable.

Probability Histogram

Probability distributions for a random variable, say X, may be represented
graphically by means of a probability histogram.

0 1 2 3 4
0

0.2

0.4

0.6

1
16

4
16

6
16

4
16

1
16

x

P
(X

=
x
)

Each rectangle corresponds to a value for X, its height is P (X = x), and its
width is 1, so that the area of each rectangle equals P (X = x). The total area
of the histogram is 1.

(The histogram above is for the number of heads in 4 coin flips.)
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3.3 Cumulative Distribution (Discrete)

In many problems we are interested in the probability that the value of a random
variable is less than or equal to (or “at most”) some real number x. i.e. P (X ≤
x).

If X is a discrete random variable with probability distribution f , the func-
tion given by

F (x) = P (X ≤ x) =
∑
t≤x

f(t)

for x ∈ (−∞,∞), is called the cumulative distribution of X.

While x can be any real number, the t values in the sum are restricted to
values in the domain of X. This is sometimes called the distribution function.

Sometimes the probability for a random variable is defined by the cumulative
distribution function.

3.9 Example. The following probability histograms demonstrate the difference
between a random variable’s probability distribution “f(x)” and its cumulative
distribution “F (x)”.

Probability distribution:

f(2) = 6
16

0 1 2 3 4
0

0.2

0.4

0.6

6
16

x

P
(X

=
x
)

Cumulative distribution:

F (2) = 11
16
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0 1 2 3 4
0

0.2

0.4

0.6

1
16

4
16

6
16

x

P
(X

=
x
)

Probability distribution:

f(3) = 4
16

0 1 2 3 4
0

0.2

0.4

0.6

4
16

x

P
(X

=
x
)

Cumulative distribution:

F (3) = 11
16



3.3. CUMULATIVE DISTRIBUTION (DISCRETE) 45

0 1 2 3 4
0

0.2

0.4

0.6

1
16

4
16

6
16

4
16

x

P
(X

=
x
)

Note that the cumulative distribution function F (x) is defined for all real x,
not only those with nonzero probability. For example

F (3.6) = P (X ≤ 3.6) = P (X ≤ 3) + P (3 < X ≤ 3.6) = P (X ≤ 3) = F (3),

since P (3 < X ≤ 3.6) = 0.

F (3.6) = 11
16

0 1 2 3 4
0

0.2

0.4

0.6

1
16

4
16

6
16

4
16

x

P
(X

=
x
)

3.10 Theorem. The cumulative distribution F (x) satisfies

1. F (−∞) = 0 and F (∞) = 1.
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2. If a < b then F (a) ≤ F (b) for any a, b ∈ R.

3.11 Example. Find the cumulative distribution (or the distribution function)
for X in the brown green sock example.

Element of
sample space Probability x

BB 20
56 2

BG 15
56 1

GB 15
56 1

GG 6
56 0

Solution. First note that the probability distribution f is given by

f(x) =


20
56 for x = 2

30
56 for x = 1

6
56 for x = 0

We have

F (0) = f(0) =
6

56

F (1) = f(0) + f(1) =
6

56
+

30

56
=

36

56

F (2) = f(0) + f(1) + f(2) =
36

56
+

20

56
=

56

56

and so

F (x) =



0 for x < 0

6
56 for 0 ≤ x < 1

36
56 for 1 ≤ x < 2

1 for x ≥ 2

3.12 Exercise. Suppose a random variableX has range {1, 2, 3, 4}. Define
f by

f(1) =
1

4
, f(2) =

1

2
f(3) =

1

8
, f(4) =

1

8

(a) Show that f is a valid probability distribution for X.

(b) Give the cumulative distribution (or the distribution function) for
X.
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3.13 Theorem. If the range of a random variable X consists of the values x1 <
x2 < · · · < xn, then f(x1) = F (x1) and

f(xi) = F (xi)− F (xi−1)

for i = 2, 3, . . . , n.

3.14 Example. Below are the histograms representing F (2) and F (1).

0 1 2 3 4
0

0.2

0.4

0.6

1
16

4
16

6
16

x

P
(X

=
x
)

0 1 2 3 4
0

0.2

0.4

0.6

1
16

4
16

x

P
(X

=
x
)

Subtracting these give f(2); i.e. F (2)− F (1) = f(2).

0 1 2 3 4
0

0.2

0.4

0.6

6
16

x

P
(X

=
x
)
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3.15 Exercise. The cumulative distribution for a discrete random variable
X is given by

F (x) =



0 for x < −2

4
18 for − 2 ≤ x < −1

7
18 for − 1 ≤ x < 0

12
18 for 0 ≤ x < 1

1 for x ≥ 1

Find the probability distribution for X.

3.4 Continuous Random Variables

3.16 Example. On a 100 km stretch of rural road we are concerned with the
possibility that a deer might cross. We are interested in the probability that it
will occur at a given location or stretch of the road. The sample space for this
experiment consists of all points in the interval from 0-100.

Suppose the probability that a deer crosses in any particular stretch of road
is the length of that section divided by 100; this assumes that any point on
the 100 km stretch has a equally likely chance of being crossed at, and it is
guaranteed that the deer will cross at some point.

From point a to point b with 0 ≤ a ≤ b ≤ 100, is the interval [a, b] and its
length is given by b− a. Thus its probability is

P ([a, b]) =
b− a

100
.

The probability of any two or more non overlapping intervals can be found by
summing the probabilities of the connected components. Thus the probability
measure proposed here has nonnegative values, assigns the entire sample space
a probability of 1, and is countably additive; hence it satisfies our postulates of
probability. We have taken the sample space to be any interval on this stretch of
road, and the random variable X here is the function that assigns that interval
to a real number in the interval [0, 100]. This is an example of a continuous
random variable. We can give the probability that X lies within an interval by

P (a ≤ X ≤ b) =
b− a

100

for a < b. Notice that the probability that X is any single point is zero.
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3.5 Probability Density Function

In the case of a continuous random variable, probabilities cannot simply be
assigned to every individual outcome as is done with a discrete random variable.

Therefore a continuous random variable must be accompanied by a proba-
bility density function in order to compute probabilities.

3.17 Definition. A positive valued function f defined on R is called a probability
density function for continuous random variable X, if and only if

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx

for any a, b ∈ R with a ≤ b. These are also called “p.d.f’s” for short.

Note that f(r) does not give the probability that X = r.

3.18 Example. In the deer crossing example, the p.d.f. for X is f(x) = 1
100 .

For example

P (35 ≤ X ≤ 50) =

∫ 50

35

1

100
dx

=
x

100

∣∣∣50
35

=
50− 35

100

=
15

100
.

The next Theorem comes from properties of definite integrals.

3.19 Theorem. Let X be a continuous random variable. If a, b ∈ R with a ≤ b
then

P (a ≤ X ≤ b) = P (a ≤ X < b) = P (a < X ≤ b) = P (a < X < b).

From the postulates of probability we obtain the following.

3.20 Theorem. A function f can serve as a probability density function for X
only if it satisfies

1. f(x) ≥ 0 for all x ∈ R.

2.

∫ ∞

−∞
f(x) dx = 1.
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3.21 Exercise. Consider the function

f(x) =

{
3x2 for 0 < x < 1
0 elsewhere

(a) Show that f is permissible as a probability density function.

(b) Use f to compute P (0.1 < x < 0.5).

(c) Sketch the graph of f and indicate the area which represents the
probability in (b).

3.22 Example. If X has probability density function

f(x) =

{
k · e−3x for x > 0

0 elsewhere

determine an appropriate k ∈ R and compute P (0.5 ≤ X ≤ 1).

Solution. Solve for k using condition 2. from the theorem.

1 =

∫ ∞

−∞
f(x) dx =

∫ 0

−∞
0 dx+

∫ ∞

0

k · e−3x dx

= lim
c→∞

k
e−3x

(−3)

∣∣∣∣c
0

= lim
c→∞

k
e−3c

(−3)
− k

e−3(0)

(−3)

=
k

3
. (since lim

r→∞
e−r = 0)

Thus k = 3. Now we can compute

P (0.5 ≤ X ≤ 1) =

∫ 1

0.5

f(x) dx =

∫ 1

0.5

3e−3x dx = −e−3x
∣∣1
0.5

= −e−3 − (−e−1.5) ≈ 0.1733

Below is a plot of 3e−3x.
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1 2 3

1

2

3

The shaded area is P (0.5 ≤ X ≤ 1).

3.6 Cumulative Distribution (Continuous)

Let X be a continuous random variable with probability density function f .
Then the function

F (x) = P (X ≤ x) =

∫ x

−∞
f(t) dt

for all x ∈ R, is called the cumulative distribution function of X.

3.23 Example. Random variable X with p.d.f. (plotted in blue)

f(x) =

{
−x2 + 4

3 for 0 ≤ x ≤ 1
0 elsewhere

Cumulative distribution F (x) =
∫ x

−∞ f(t) dt.

The shaded areas in the graphs below represent values F (0.5) and F (0.75)
respectively.
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0.5 1 1.5

0.5

1

1.5

2

0.5 1 1.5

0.5

1

1.5

2

From the properties of integrals we have the following.

3.24 Theorem. If continuous random variableX has probability density function
f(x) and cumulative distribution function F (x) then

P (a ≤ X ≤ b) = F (b)− F (a)

for any a, b ∈ R with a ≤ b, and

f(x) =
d

dx
F (x)

where derivative exists.

3.25 Example. In the previous example we had probability density f(x) = −x2+
4
3 for 0 ≤ x ≤ 1 and 0 elsewhere. By the theorem we have,

P (0.25 ≤ X ≤ 0.75) = F (0.75)− F (0.25)

We can visualize the result by subtracting the shaded areas under the curve
in the plots of the cumulative distribution.
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0.5 1 1.5

0.5

1

1.5

2

0.5 1 1.5

0.5

1

1.5

2

In the figures above, subtract the shaded area on the right from the shaded area
on the left to get the shaded are shown below

0.5 1 1.5

0.5

1

1.5

2

The cumulative distribution function is

F (x) =

∫ x

−∞
f(t) dt =

∫ x

0

−t2 + 4

3
dt = − t

3

3
+

4t

3

∣∣∣∣x
0

= −x
3

3
+

4x

3
,

for 0 ≤ x ≤ 1 ; F (x) = 0 for x < 0 and F (x) = 1 for x > 1. Its derivative is the
probability density function

d

dx
F (x) =

d

dx

(
−x

3

3
+

4x

3

)
= −x2 + 4

3
= f(x).
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3.26 Example. Find the cumulative distribution function F (x) for

f(x) =

{
3e−3x for x > 0
0 elsewhere

and use it to evaluate P (0.5 ≤ X ≤ 1) via the theorem above.

Solution. For x > 0 we have

F (x) =

∫ x

−∞
f(t) dt =

∫ x

0

3e−3t dt = −e−3t
∣∣x
0
= −e−3x + 1.

For x ≤ 0, f(x) = 0, and so

F (x) =

{
0 for x ≤ 0

1− e−3x for x > 0

Then using the theorem

P (0.5 ≤ X ≤ 1) = F (1)− F (0.5) = (1− e−3)− (1− e−1.5) ≈ 0.1733.

3.7 Multivariate Distributions

Histogram showing the probability distribution for the roll of two dice:

We now consider the case when two or more random variables are defined on
the same (joint) sample space. We start with the bivariate case, that is when
two random variables X and Y are defined for a common sample space.
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For example X could be the sum of rolling two dice, and Y could be the
product.

Write P (X = x, Y = y) for the probability of the intersection of events
X = x and Y = y.

3.27 Example.

Two caplets are randomly selected from a bottle containing 3 asprin, 2 seda-
tive, and 4 laxitive. Let X be the number of asprin, and Y be the number of
sedative drawn (of the two). Find the probabilities associated to each possible
pair of values for X and Y .

The possible pairs for X,Y are: (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2).

There are
(
9
2

)
= 36 different possible two-pill selections that can be drawn.

The number of different ways to draw x asprin, y sedative, and therefore
2− x− y laxitive (where 0 ≤ x+ y ≤ 2) is(

3

x

)(
2

y

)(
4

2− x− y

)
.

Thus, for the (x, y) pairs above,

P (X = x, Y = y) =

(
3
x

)(
2
y

)(
4

2−x−y

)
36

We summarize the probabilities in a table

x
0 1 2

0
6

36

12

36

3

36

y 1
8

36

6

36

2
1

36
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3.8 Joint Probability Distributions

3.28 Definition. If X and Y are discrete random variables, the function

f(x, y) = P (X = x, Y = x)

for each pair (x, y) in the range of X and Y is called the joint probability distri-
bution of X and Y .

3.29 Theorem. A bivariate function f can serve as a joint probability distribu-
tion for discrete random variables X and Y if and only if

1. f(x, y) ≥ 0.

2.
∑
x

∑
y

f(x, y) = 1, where the sums are taken over all possible pairs (x, y).

3.30 Example.

x
0 1 2

0
6

36

12

36

3

36

y 1
8

36

6

36

2
1

36

To verify the theorem for the caplet example, note that all values are positive
and ∑

x

∑
y

f(x, y) = f(0, 0) + f(1, 0) + f(0, 1) + f(2, 0) + f(1, 1) + f(0, 2)

=
6

36
+

12

36
+

3

36
+

8

36
+

6

36
+

1

36
= 1.

3.31 Exercise. Suppose the joint probability distribution of discrete ran-
dom variables X and Y is given by

f(x, y) = c(x2 + y2)

for all pairs (x, y) with x = −1, 0, 1, 3 and y = −1, 2, 3. Find the value
of c ∈ R.
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3.9 Joint Cumulative Distribution (Discrete)

3.32 Definition. If X and Y are discrete random variables, with joint probability
distribution f , then the function

F (x, y) = P (X ≤ x, Y ≤ y) =
∑
s≤x

∑
t≤y

f(s, t)

defined for all x, y ∈ R, is called the joint cumulative distribution of X and Y ,
or the joint distribution function.

3.33 Example.

Below is the joint distribution of X and Y for the caplet example.

x
0 1 2

0
6

36

12

36

3

36

y 1
8

36

6

36

2
1

36

Let F (x, y) be the joint cumulative distribution of the caplet example. Find
F (2.3, 1.1).

Solution. To find F (2.3, 1.1) = P (X ≤ 2.3, Y ≤ 1.1) we must sum the proba-
bilities f(x, y) over all pairs (x, y) in the range of X and Y with x ≤ 2.3 and
y ≤ 1.1.

The pairs included here are (0, 0), (1, 0), (0, 1), (2, 0), (1, 1).

Therefore

F (2.3, 1.1) = f(0, 0) + f(0, 1) + f(1, 0) + f(1, 1) + f(2, 0)

6

36
+

8

36
+

12

36
+

6

36
+

3

36
=

35

36

As with the single variable case we have the following properties.

3.34 Theorem. If F (x, y) is the joint cumulative distribution for discrete random
variables X and Y then

1. F (−∞,−∞) = 0

2. F (∞,∞) = 1

3. If a ≤ c and b ≤ d then F (a, b) ≤ F (c, d).
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3.10 Joint Probability Density Function

3.35 Definition. We say that random variables X and Y are jointly continuous
if there exists a function f(x, y) defined for all x, y ∈ R, such that

P ((X,Y ) ∈ A) =
x

(x,y)∈A

f(x, y) dx dy

for any region A in the xy-plane. The function f(x, y) is called the joint proba-
bility density function of X and Y .

Plot of a 2-variable joint density function:

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4

P (x)
P (y)

x y

P

3.36 Theorem. A bivariate function f can serve as a joint probability density
function of a pair of continuous random variables X and Y if it satisfies:

1. f(x, y) ≥ 0 for all x, y ∈ R.

2.

∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy = 1.

3.37 Example. Let

f(x, y) =

{
3
5x(y + x) for 0 < x < 1, 0 < y < 2

0 elsewhere
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1. Verify that f can serve as a probability density function for two jointly
continuous random variables X and Y .

2. For A = {(x, y)|0 < X < 1
2 , 1 < Y < 2} find P ((X,Y ) ∈ A).

Solution.

f(x, y) =

{
3
5x(y + x) for 0 < x < 1, 0 < y < 2

0 elsewhere

We see that f(x, y) ≥ 0 for all 0 < x < 1, 0 < y < 2.

Next we integrate over the entire plane. First we see that

∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy =

∫ 2

0

∫ 1

0

3

5
x(y + x) dx dy

since f(x, y) = 0 for all other regions.

We proceed by integrating first with respect to x, treating y as constant:

∫ 2

0

(∫ 1

0

3

5
(yx+ x2) dx

)
dy =

3

5

∫ 2

0

(
y
x2

2
+
x3

3

∣∣∣∣1
0

dx

)
dy

=
3

5

∫ 2

0

y

2
+

1

3
dy

Finally integrate with respect to y.

3

5

∫ 2

0

y

2
+

1

3
dy =

3

5

(
y2

4
+
y

3

∣∣∣∣2
0

)

=
3

5

(
4

4
+

2

3

)
= 1.

Therefore
∫∞
−∞

∫∞
−∞ f(x, y) dx dy = 1 as required.
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P ((X,Y ) ∈ A) =

∫ 2

1

∫ 1
2

0

3

5
x(y + x) dx dy

=
3

5

∫ 2

0

(
y
x2

2
+
x3

3

∣∣∣∣ 12
0

dx

)
dy

=
3

5

∫ 2

1

y

8
+

1

24
dy

=
3

5

(
y2

16
+

y

24

∣∣∣∣2
1

)

=
3

5

(
4

16
+

2

24
− 1

16
+

1

24

)
=

11

80

3.11 Joint Cumulative Distribution (Continuous)

3.38 Definition. If X and Y are jointly continuous random variables, with joint
probability density f , the function given by

F (x, y) = P (X ≤ x, Y ≤ y) =

∫ y

−∞

∫ x

−∞
f(s, t) ds dt

for x, y ∈ R, is called the joint cumulative distribution function of X and Y (or
simply the joint distribution function).

As with the discrete case we have that

� F (−∞,−∞) = 0

� F (∞,∞) = 1

� If a ≤ c and b ≤ d then F (a, b) ≤ F (c, d).

It also follows that f(x, y) = ∂2

∂x∂yF (x, y) is the joint probability density
function.

3.39 Example. If the joint probability density function of X and Y is given by

f(x, y) =

{
4xy for 0 < x < 3, 0 < y < 1

3
0 elsewhere

find F (x, y).

Solution. To find F (x, y) =
∫ y

−∞
∫ x

−∞ f(s, t) ds dt we must consider different
regions in the plane where f(x, y) is defined.
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If either x < 0 or y < 0 then f(x, y) = 0 and so F (x, y) = 0.

If 0 < x < 3 and 0 < y < 1
3 then

F (x, y) =

∫ y

−∞

∫ x

−∞
f(s, t) ds dt =

∫ y

0

∫ x

0

4st ds dt = x2y2

If x ≥ 3 and 0 < y < 1
3 then

F (x, y) =

∫ y

−∞

∫ x

−∞
f(s, t) ds dt =

∫ y

0

∫ 3

0

4st ds dt = 9y2

If 0 < x < 3 and y ≥ 1
3 then

F (x, y) =

∫ y

−∞

∫ x

−∞
f(s, t) ds dt =

∫ 1
3

0

∫ x

0

4st ds dt =
x2

9

Finally if x ≥ 3 and y ≥ 1
3 then

F (x, y) =

∫ y

−∞

∫ x

−∞
f(s, t) ds dt =

∫ 1
3

0

∫ 3

0

4st ds dt = 1

In summary

F (x, y) =


0 for x < 0 or y < 0

x2y2 for 0 < x < 3, 0 < y < 1
3

9y2 for x ≥ 3, 0 < y < 1
3

x2

9 for 0 < x < 3, y ≥ 1
3

1 for x ≥ 3, y ≥ 1
3

Joint probability distributions/densities can be defined similarly for three or
more random variables, though we won’t spend time on this here.

3.12 Marginal Distributions

Returning to the caplet example, sum the rows and columns of the table of
probabilities.
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x
0 1 2

0
6

36

12

36

3

36

21

36

y 1
8

36

6

36

14

36

2
1

36

1

36

15

36

18

36

3

36

The column sums are the probabilities that X = 0, 1, 2 respectively, and the
row sums are probabilities that Y = 0, 1, 2 respectively. i.e. the column totals
are the probability distribution for X: for x = 0, 1, 2

g(x) = P (X = x) =

2∑
y=0

f(x, y),

and the row totals are the probability distribution for Y : for y = 0, 1, 2

h(y) = P (Y = y) =

2∑
x=0

f(x, y).

We summarize the marginal distributions as follows:

Marginal distribution for X:

g(0) =
15

36
, g(1) =

18

36
, g(2) =

3

36
.

Marginal distribution for Y :

h(0) =
21

36
, h(1) =

14

36
, h(2) =

1

36
.

Note that the probability distribution for X (alone) is given by

P (X = x) =

(
3
x

)(
6

2−x

)(
9
2

)
(for x = 0, 1, 2), which is the same as the marginal distribution for X. For
example,

P (X = 1) =

(
3
1

)(
6
1

)(
9
2

) =
18

36
= g(1).
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3.40 Definition. If X and Y are discrete random variables, and f(x, y) is their
joint probability distribution, then the function

g(x) =
∑
y

f(x, y)

is called the marginal distribution of X and the function

h(y) =
∑
x

f(x, y)

is called the marginal distribution of Y . The sums are over all values of either
y or x respectively.

3.13 Marginal Density

3.41 Definition. If X and Y are jointly continuous random variables, and f(x, y)
is their joint probability density function, then

g(x) =

∫ ∞

−∞
f(x, y) dy

is called the marginal density of X and the function

h(y) =

∫ ∞

−∞
f(x, y) dx

is called the marginal density of Y . These functions are defined for all x ∈ R
,y ∈ R respectively.

3.42 Example. Find the marginal densities of X and Y given their joint proba-
bility density

f(x, y) =

{
2
3 (x+ 2y) for 0 < x < 1, 0 < y < 1

0 elsewhere

Solution. Marginal density of X: For 0 < x < 1,

g(x) =

∫ ∞

−∞
f(x, y) dy =

∫ 1

0

2

3
(x+ 2y) dy =

2

3
(x+ 1)

and g(x) = 0 otherwise.

Marginal density of Y : For 0 < y < 1,

h(y) =

∫ ∞

−∞
f(x, y) dx =

∫ 1

0

2

3
(x+ 2y) dx =

1

3
(1 + 4y)

and h(y) = 0 otherwise.
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Joint marginal distributions can be defined in the case of 3 or more random
variables, though we won’t pursue this.

3.43 Example. A circular biathlon target for prone position has a diameter of
45mm. Suppose that each point on the target has an equally likely probability
of being hit by a shot.

Let (0, 0) be the centre of the target, and define random variables X and Y ,
so that (X,Y ) denotes the coordinates (in millimetres) of the shot fired.

The joint density function for X and Y is then, for some constant k,

f(x, y) =

{
k for x2 + y2 ≤ (22.5)2

0 elsewhere

It follows that k = 1
(22.5)2π , which is 1 over the area of the circle.

To find the marginal density for X, integrate over all y values:

x2 + y2 ≤ (22.5)2 ⇒ y2 ≤ (22.5)2 − x2

⇒ −
√
(22.5)2 − x2 ≤ y ≤

√
(22.5)2 − x2

Thus

g(x) =

∫ ∞

−∞
f(x, y) dy =

∫ √
(22.5)2−x2

−
√

(22.5)2−x2

1

(22.5)2π
dy

=
2
√
(22.5)2 − x2

(22.5)2π

The marginal density of X can be used to find the probability the shot will
land any horizontal distance x from the centre, regardless of its vertical position.

Notice that g(x) is largest when x = 0 and gets smaller as x gets near the
boundary of the target.

*This example uses more multivariable calculus than you are expected to
know for this course, and was only presented as an application of the theory we
have learned.
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3.14 Conditional Distributions

Recall: Conditional probability of event A given event B:

P (A|B) =
P (A ∩B)

P (B)
(P (B) ̸= 0)

In terms of random variables: If A is the event X = x and B is the event Y = y
then

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
.

For discrete random variables with joint probability distribution f(x, y) we have

P (X = x|Y = y) =
f(x, y)

h(y)
,

where h(y) ̸= 0 is the marginal distribution of Y . This prompts the following
definition.

3.44 Definition. If X and Y are discrete random variables with joint probability
distribution f(x, y), and respective marginal distributions g(x) and h(y), the
function

f(x|y) = f(x, y)

h(y)

is called the conditional distribution of X given Y = y, provided h(y) ̸= 0. The
function

w(y|x) = f(x, y)

g(x)

is called the conditional distribution of Y given X = x, provided g(x) ̸= 0.

3.45 Example.

x
0 1 2

0
6

36

12

36

3

36

21

36

y 1
8

36

6

36

14

36

2
1

36

1

36

15

36

18

36

3

36

Returning to the caplet example: The conditional distribution of X given

Y = 1 is, f(x|1) = f(x,1)
h(1) .
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Its values are:

f(0|1) = f(0, 1)

h(1)
=

8
36
14
36

=
8

14

f(1|1) = f(1, 1)

h(1)
=

6
36
14
36

=
6

14

f(2|1) = f(2, 1)

h(1)
=

0
14
36

= 0

In words, what do these probabilities mean?

3.15 Conditional Density

We now extend the notion of conditional distribution for joint discrete random
variables to conditional density for jointly continuous random variables.

3.46 Definition. For jointly continuous random variables X and Y with joint
density f(x, y), and marginal densities g(x) and h(y), the function

f(x|y) = f(x, y)

h(y)

is called the conditional density of X given Y = y, provided h(y) ̸= 0. The
function

w(y|x) = f(x, y)

g(x)

is called the conditional density of Y given X = x, provided g(x) ̸= 0.

3.47 Example. Let X and Y be jointly continuous random variables with joint
probability density given by

f(x, y) =

{
3
5x(y + x) for 0 < x < 1, 0 < y < 2

0 otherwise

(a) Find conditional probability of Y given X = x.

(b) Find P (0 < Y < 1|X = 0.75).

Solution. (a) First we need the marginal density function for X:

g(x) =

∫ ∞

−∞
f(x, y) dy =

∫ 2

0

3

5
x(y + x) dy =

3

5

(
xy2

2
+ x2y

)∣∣∣∣2
0

thus g(x) = 6
5 (x+x

2). The conditional density function for 0 < x < 1, 0 <
y < 2 is then

w(y|x) = f(x, y)

g(x)
=

3
5x(y + x)
6
5 (x+ x2)

=
y + x

2 + 2x
.
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(b) Using what we just found,

P (0 < Y < 1|X = 0.75) =

∫ 1

0

w(y|0.75) dy =

∫ 1

0

y + 0.75

3.5
dy

=
y2

7
+

3y

14

∣∣∣∣1
0

=
5

14
.

3.48 Exercise. Let X and Y be jointly continuous random variables with
joint probability density given by

f(x, y) =

{
4xy for 0 < x < 1, 0 < y < 1
0 otherwise

Find P (0 < X < 0.5|Y = 0.5).

For joint distributions/densities of three or more joint random variables, we
can define conditional probabilities in various ways, consistent with the two
variable case. For example, if we have four random variables X1, X2, X3, X4,
with joint distribution/density f(x1, x2, x3, x4), one can define functions

f(x1|x2, x3, x4) =
f(x1, x2, x3, x4)

m(x2, x3, x4)
,

f(x2, x3|x1, x4) =
f(x1, x2, x3, x4)

m(x1, x4)
,

f(x1, x2, x4|x3) =
f(x1, x2, x3, x4)

m(x3)
,

where the denominators are marginal distributions/densities. This gives many
ways to analyse probabilities in an experiment when several random variables
are defined.

3.16 Independent Random Variables

Just as we defined the concept of independent events, we may speak of indepen-
dent random variables.

3.49 Definition. If random variables X and Y have joint probability distribution
(or density) f(x, y) and marginal distributions (resp. densities) g(x) and h(y),
then we say X and Y are independent if and only if

f(x, y) = g(x) · h(y).
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(In the higher dimensional cases we require that the joint distribution/density
be the product of the individual marginal distributions/densities)

3.50 Exercise. Let X and Y be jointly continuous random variables with
joint probability density function

f(x, y) =

{
6e−2xe−3y for 0 < x <∞, 0 < y <∞

0 otherwise

Show that X and Y are independent random variables.



Chapter 4

Mathematical Expectation

4.1 Example. Suppose you are at a casino that has a dice game which costs
$1000 for a single roll of two 6-sided dice. You win $5,555 by rolling a 7 and
lose your money otherwise.

Do you think it is worthwhile to play this game? Could you expect to come
out ahead by repeatedly playing this game?

4.2 Example. Suppose a university fundraiser sells 10,000 raffle tickets at a dollar
apiece with a grand prize of $5,000, a second prize of $1,000 and two third place
prizes of $500 each.

Do you think your ticket is worth $1? How much do you think it is worth?
In other words, how much can you “expect” to win in this raffle?

4.1 The Expected Value of a Discrete Random Vari-

able

4.3 Definition. If X is a discrete random variable and f(x) is the value of its
probability distribution at x, the expected value of X (or expectation of X) is
defined

E(X) =
∑
x

x · f(x).

where the sum is over all x in the range of X.

The sum must be defined in order for the expected value to have meaning.

In the first example of the dice game, let random variable X be the amount
of money won on each roll. The range of X is {0, 5555}.

69
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Since the probability of rolling a 7 is 1
6 we have P (X = 5555) = 1

6 and
therefore P (X = 0) = 5

6 .

The expected value is

E(X) = 0 ·
(
5

6

)
+ 5555 ·

(
1

6

)
≈ 925.83.

This analysis shows that this is a losing game, because our expected value is
less than the cost to play. i.e. in the long run, we can expect to lose money.

Raffle Ticket

In the raffle ticket example we let X denote the possible winnings for our raffle
ticket. Typically once a ticket is drawn it is not replaced to be drawn again, so
the range of X is {0, 500, 1000, 5000}. (This ignores the cost of the ticket.)

Four tickets will be drawn for the four prizes and there is an equally likely
chance of 1

10000 for each prize. Therefore P (X = 0) = 9996
10000 , P (X = 500) =

2
10000 , P (X = 1000) = 1

10000 , P (X = 5000) = 1
10000 .

The expected value of X is E(X) = 0·
(

9996
10000

)
+500·

(
2

10000

)
+1000·

(
1

10000

)
+

5000 ·
(

1
10000

)
= 0.70.

Hypothetically, by playing the raffle repeatedly, we expect to win $0.70 on
average; therefore losing money with the $1 cost. We could place a value of
$0.70 for our ticket.

4.4 Example. In 2022, the Heart and Stroke Lottery sold/distributed 168,000
tickets for their annual lottery, where there were 68,879 prizes (of a variety of
cash values) to be won with at total value of $5,375,499.89. This is a charity
event and tickets cost $100 each.

How much could a person “expect” to win with a purchase of a ticket?

To answer this question we may need more information.

Firstly, in this lottery, tickets are replaced after being drawn so that one
ticket can win multiple times. This increases the range of X. For example, the
top two grand prizes are $1,000,000 each, meaning we include both 1000000 and
2000000 in the range of X (as well as 5,375,499.89, for the event of winning all
prizes).

Second we need a list of all the different prizes, their quantities and their
cash values. (there are several non-cash prizes)

It can be quite a chore to compute expected value since different combina-
tions of prizes can add up to the same value.
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Raffle with Replacement

Solution. Returning to the previous raffle example, let’s compute the expected
value of a single ticket with only three prize draws of $5,000, $1,000, $500 each,
but now tickets are replaced each time to allow for multiple wins. (Again 10000
tickets sold.)

LetX be the total prize money won. The range ofX is {0, 500, 1000, 1500, 5000, 5500, 6000, 6500}.
Then

P (X = 0) =
(

9999
10000

)3
,

P (X = 500) =
(

9999
10000

)2 ( 1
10000

)
,

P (X = 1000) =
(

9999
10000

) (
1

10000

) (
9999
10000

)
,

P (X = 1500) =
(

9999
10000

) (
1

10000

)2
,

P (X = 5000) =
(

1
10000

) (
9999
10000

)2
,

P (X = 5500) =
(

1
10000

) (
9999
10000

) (
1

10000

)
,

P (X = 6000) =
(

1
10000

)2 ( 9999
10000

)
,

P (X = 6500) =
(

1
10000

)3
The expected value of X is

E(X)

= 0 ·
(

9999

10000

)3

+ 500 ·
(

9999

10000

)2(
1

10000

)
+ 1000 ·

(
9999

10000

)2(
1

10000

)
+ 1500 ·

(
9999

10000

)(
1

10000

)2

+ 5000 ·
(

9999

10000

)2(
1

10000

)
+ 5500 ·

(
9999

10000

)(
1

10000

)2

+ 6000 ·
(

9999

10000

)(
1

10000

)2

+ 6500 ·
(

1

10000

)3

= 0.65

4.5 Example.

7 $ BAR
BAR BAR 7


 ♡ $

A slot machine has three wheels with 20 symbols on each wheel. There is
one 7, two BAR, and three 
 on each wheel. It costs $0.25 to play. Payouts:

Wheel 1 Wheel 2 Wheel 3
7 7 7 $500

BAR BAR BAR $100


 
 
 $20
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(all other permutations lose).

What is the expected value of this game? (ignore cost to play)

4.2 The Expected Value of a Continuous Random Vari-
able

4.6 Definition. If X is a continuous random variable and f(x) is its probability
density function, the expected value of X is defined

E(X) =

∫ ∞

−∞
x · f(x) dx.

The integral must exist in order for the expected value to have meaning.

4.7 Example. If a contractor’s profit on a construction job can be looked upon
as a continuous random variable having probability density

f(x) =

{
1
18 (x+ 1) for − 1 < x < 5
0 otherwise

where the units are in $1,000, what is her expected profit?

Solution. The expected value of X, where X denotes the contractor’s profit in
$1,000’s, is

E(X) =

∫ ∞

−∞
x · f(x) dx

=

∫ 5

−1

x · 1

18
(x+ 1) dx

=
1

18

(
x3

3
+
x2

2

)∣∣∣∣5
−1

=
1

18

(
125

3
+

25

2
− (−1)

3
− 1

2

)
= 3.

Therefore the expected profit is 3 · $1, 000 = $3, 000.

4.3 Properties Expected Value

4.8 Theorem. If X is a discrete random variable with probability distribution
f(x), the expected value of g(X) is given by

E(g(X)) =
∑
x

g(x) · f(x).
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If X is a continuous random variable with probability density function f(x), the
expected value of g(X) is given by

E(g(X)) =

∫ ∞

−∞
g(x) · f(x) dx.

4.9 Example. Let X be a random variable that takes the values −1, 0, 1, and
has probability distribution given by

f(−1) = 0.2, f(0) = 0.5, f(1) = 0.3.

Find E(X2).

Solution. Before using the theorem, let’s find E(X2) directly. We view X2 as a
new random variable which we’ll call Y .

The range of Y is {0, 1} and it has probability distribution

P (Y = 0) = P (X = 0) = f(0) = 0.5

P (Y = 1) = P (X = 1) + P (X = −1) = f(1) + f(−1) = 0.5

Then

E(X2) = E(Y ) = 0 · P (Y = 0) + 1 · P (Y = 1) = 0 · (0.5) + 1 · (0.5) = 0.5.

We can find this using the theorem as well: Let g(X) = X2, and let x1 =
−1, x2 = 0, x3 = 1. Then according the theorem

E(g(X)) =

3∑
i=1

g(xi)f(xi)

= g(x1)f(x1) + g(x2)f(x2) + g(x3)f(x3)

= g(−1)f(−1) + g(0)f(0) + g(1)f(1)

= (−1)2 · (0.2) + (0)2 · (0.5) + (1)2 · (0.3)
= 0.5.

Note that: E(X2) = 0.5 ̸= (E(X))2 = 0.01

4.10 Example. Suppose X has probability density

f(x) =

{
e−x if x > 0
0 otherwise

Find the expected value of g(X) = e3X/4.
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Solution. By our theorem

E(g(x)) =

∫ ∞

−∞
g(x)f(x) dx

=

∫ ∞

0

e3x/4 · e−x dx

=

∫ ∞

0

e−x/4 dx

= −4e−x/4
∣∣∣∞
0

= 4.

A useful special case of the theorem is:

4.11 Theorem. If a and b are constants, then

E(aX + b) = aE(X) + b.

In particular if a = 0, then E(b) = b and if b = 0 then E(aX) = aE(X).

Proof. To prove this (for the discrete case) let g(X) = aX + b. Then

E(aX + b) = E(g(x))

=
∑
x

g(x) · f(x)

=
∑
x

(ax+ b) · f(x)

=
∑
x

(ax · f(x) + b · f(x))

=
∑
x

ax · f(x) +
∑
x

b · f(x)

= a
∑
x

x · f(x) + b
∑
x

f(x)

= aE(X) + b,

since
∑

x f(x) = 1. (see text for continuous case)

7 $ BAR
BAR BAR 7


 ♡ $

4.12 Example. Returning to our slot machine example, we chose our random
variable X to be the expected payout, and not the expected profit. Then we
calculated the expected payout. But suppose we want the expected profit.
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If Y is our expected profit then Y has range {−0.25, 19.75, 99.75, 499.75}

So then P (Y = y) = P (X = y + 0.25), and

E(Y ) = (−0.25) · P (X = 0) + (19.75) · P (X = 20)

+ (99.75) · P (X = 100) + (499.75) · P (X = 500)

On the other hand since Y = g(X) = X − 0.25, we can compute

E(Y ) = E(X − 0.25) = E(X)− 0.25

using the property above (which, in this case, is a nicer calculation).

We can extend extend the theorem above to more expressions:

4.13 Theorem. If c1, c2, . . . , cn are constants, then

E

(
n∑

i=1

cigi(X)

)
=

n∑
i=1

ciE(gi(X)),

where the gi are functions.

(try proving this for the continuous case)

Proof. SupposeX has p.d.f. f(x). To apply the theorem let h(x) =
∑n

i=1 cigi(X).
Then

E(h(X)) =

∫ ∞

−∞
h(x) · f(x) dx

=

∫ ∞

−∞

(
n∑

i=1

cigi(X)

)
· f(x) dx

=

n∑
i=1

ci

∫ ∞

−∞
gi(X) · f(x) dx

=

n∑
i=1

ciE(gi(X)).

4.4 Multivariate Expected Value

SupposeX and Y are random variables with a joint probability distribution/density
f(x, y). Then Z = g(X,Y ) is a random variable defined by the function g de-
pending onX and Y . The expected value of Z may be computed in the following
way.
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4.14 Theorem. With notation as above ifX and Y are discrete random variables,
then

E(g(X,Y )) =
∑
x

∑
y

g(x, y) · f(x, y)

where sums are taken over x and y in the ranges of X and Y respectively. In
the continuous case,

E(g(X,Y )) =

∫ ∞

−∞

∫ ∞

−∞
g(x, y) · f(x, y) dx dy

4.15 Example. Returning again to the caplet example.

Let Z = X+Y . Then Z is the random variable which gives the total number
of asprin or sedative when two caplets are drawn.

What is the expected value of Z?
x

0 1 2

0
6

36

12

36

3

36

y 1
8

36

6

36

2
1

36

Solution. First note that P (Z ≥ 3) = 0 as f(2, 1) = f(1, 2) = f(2, 2) = 0.

E(X + Y )

=

2∑
x=0

2∑
y=0

(x+ y) · f(x, y)

= (0 + 0) · 6

36
+ (0 + 1) · 8

36
+ (0 + 2) · 1

36

+ (1 + 0) · 12
36

+ (1 + 1) · 6

36
+ (2 + 0) · 3

36

=
40

36
≈ 1.1111.
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4.16 Example. If the joint probability density of X and Y is given by,

f(x, y) =

{
x+ y for 0 < x < 1, 0 < y < 1
0 otherwise

find the expected value of XY .

Solution.

E(XY ) =

∫ ∞

−∞

∫ ∞

−∞
xy · f(x, y) dx dy

=

∫ 1

0

∫ 1

0

xy · (x+ y) dx dy

=

∫ 1

0

∫ 1

0

x2y + xy2 dx dy

=

∫ 1

0

x3y

3
+
x2y2

2

∣∣∣∣1
0

dy

=

∫ 1

0

y

3
+
y2

2
dy

=
y2

6
+
y3

6

∣∣∣∣1
0

=
1

3
.

4.5 Moments

4.17 Definition. The rth moment about the origin of a random variable X is
defined as the expected value of Xr. In the discrete case this is,

E(Xr) =
∑
x

xr · f(x),

and in the continuous case this is

E(Xr) =

∫ ∞

−∞
xr · f(x) dx

for r = 0, 1, 2, 3, . . . . (here f(x) is the probability distribution/density of X)

The Latin origin of the word is the verb “to move.” In physics a moment is
the product of the distance to some point from the origin (raised to the power
r), times a physical quantity such as mass, force, or charge.
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For example, suppose there are three point masses sitting on a massless rigid
beam 6m in length.

Object 1 lies 2m left of centre and has a mass of 12kg, objects 2 and 3 lie
respectively 1m and 2.5m right of centre and have respective masses 3kg and 9
kg.

0−2 1 2.5

12kg 3kg 9kg

Let x1 = −2, x2 = 1, x3 = 2.5 be the positions of the objects, and let f(x) be
the mass distribution (i.e. f(xi) is the mass of object i). The rth moments of
mass of this physical system are

3∑
i=1

xri · f(xi)

0th moment of mass:
∑3

i=1 x
0
i · f(xi) = (1)(12) + (1)(3) + (1)(9) = 24.

1st moment of mass:
∑3

i=1 xi · f(xi) = (−2)(12) + (1)(3) + (2.5)(9) = 1.5.

2nd moment of mass:
∑3

i=1 x
2
i · f(xi) = (4)(12) + (1)(3) + (6.25)(9) = 107.25.

The 0th moment of mass is the total mass, 24kg.

The 1st moment of mass divided by the total mass is the centre of mass, or
the balance point of the beam which is 1.5kg·m

24kg = 0.0625m right of centre.

The 2nd moment of mass 107.25 kg·m2, is the moment of inertia, which gives
the amount of torque (in kg m2/s2) required to cause an angular acceleration
of 1 rad/s2, around the line y = 0.

In a similar way, moments of random variables describe their probability
distribution.

The Mean of a Distribution

The 0th moment about the origin of a random variable X, is equal to 1 since,

E(X0) =
∑
x

x0 · f(x) =
∑
x

f(x) = 1

in the discrete case, and in the continuous case

E(X0) =

∫ ∞

−∞
x0 · f(x) dx =

∫ ∞

−∞
f(x) dx = 1.
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The 1st moment about the origin is the expected value:

E(X) =
∑
x

x · f(x), E(X) =

∫ ∞

−∞
x · f(x) dx

Because of its importance, it is called the mean of the distribution of X (or the
mean of X) and is denoted simply by µ.

In every day language, “mean” and “average” (of a set of values) are used
interchangeably to mean the sum of all values dived by the number of values;
example, average test score.

We can view the test score as a discrete random variable X, for the experi-
ment of selecting a test at random from the class. In this case some test scores
may appear repeatedly (e.g. 5 students may have scored 80%, and 3 scored
75%), so the probability of drawing particular scores may not be equally likely.
The expected value of X, also called the mean of X, is the sum of each score
times their respective probabilities.

However, assuming an equally likely chance of any test being drawn, the
probability of drawing a particular score is the number of tests with that score
divided by the total number of tests, and it follows that the mean and average,
for equally likely outcomes, is the same.

The rth Moment About the Mean

4.18 Definition. LetX be a random variable with probability distribution/density
f(x) having mean µ. The rth moment about the mean of X is defined as the
expected value of (X − µ)r.

discrete: E((X − µ)r) =
∑
x

(x− µ)r · f(x),

continuous: E((X − µ)r) =

∫ ∞

−∞
(x− µ)r · f(x) dx

Note that E((X − µ)0) = 1 and E((X − µ)) = 0 (provided µ exists).

Variance and Standard Deviation

The 2nd moment about the mean, E((X − µ)2), is called the variance of the
distribution for X, or simply the variance of X, and is denoted by σ2, or var(X).

The positive square root of the variance, σ, is called the standard deviation.
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These values describe the dispersion of the probability distribution of X.

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

7
·1

0−
2

0.
1 0.
1
2

0
.1
3

0
.1
6

0.
13

0.
12

0
.1

7
·1

0−
2

0

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

2
·1

0
−
2

8
·1

0
−
2

0.
1 0.
15

0
.3

0
.1
5

0.
1

8
·1

0
−
2

2
·1

0
−
2

0

µ = 5, σ2 = 5.26 µ = 5, σ2 = 3.18

1 2 3 4 5 6 7 8 9
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0.6
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1
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2

1
·1
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1

0
.1
8

0
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0.
1
8

0.
1

1
·1

0
−
2

1
·1

0−
2

0

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1
·1

0
−
2

1
·1

0
−
2

2
·1

0−
2

0.
11

0
.7

0
.1
1

2
·1

0−
2

1
·1

0
−
2

1
·1

0
−
2

0

µ = 5, σ2 = 1.66 µ = 5, σ2 = 0.88

4.19 Example. Let X and Y be discrete random variables with the following
distributions

x P (X = x)
1 0
2 1/4
3 1/2
4 0
5 0
6 1/4

y P (Y = y)
1 1/4
2 0
3 0
4 1/2
5 1/4
6 0

Show that these distributions have the same mean and variance.

Solution. For X:

µ = E(X) = 1 · 0 + 2 · 1
4
+ 3 · 1

2
+ 4 · 0 + 5 · 0 + 6 · 1

4
=

7

2

σ2 = E((X − µ)2) =

(
1− 7

2

)2

· 0 +
(
2− 7

2

)2

· 1
4
+

(
3− 7

2

)2

· 1
2

+

(
4− 7

2

)2

· 0 +
(
5− 7

2

)2

· 0 +
(
6− 7

2

)2

· 1
4
=

9

4

For Y :

µ = E(Y ) = 1 · 1
4
+ 2 · 0 + 3 · 0 + 4 · 1

2
+ 5 · 1

4
+ 6 · 0 =

7

2
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σ2 = E((Y − µ)2) =

(
1− 7

2

)2

· 1
4
+

(
2− 7

2

)2

· 0 +
(
3− 7

2

)2

· 0

+

(
4− 7

2

)2

· 1
2
+

(
5− 7

2

)2

· 1
4
+

(
6− 7

2

)2

· 0 =
9

4

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

P (X = x)

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

P (Y = y)

In both cases the mean is 7
2 and the variance is 9

4 .

Let us now compute the 3rd moment about the mean. For X:

µ3 = E((X − µ)3) =

(
1− 7

2

)3

· 0 +
(
2− 7

2

)3

· 1
4
+

(
3− 7

2

)3

· 1
2

+

(
4− 7

2

)3

· 0 +
(
5− 7

2

)3

· 0 +
(
6− 7

2

)3

· 1
4
= 3

For Y :

µ3 = E((Y − µ)3) =

(
1− 7

2

)3

· 1
4
+

(
2− 7

2

)3

· 0 +
(
3− 7

2

)3

· 0

+

(
4− 7

2

)3

· 1
2
+

(
5− 7

2

)3

· 1
4
+

(
6− 7

2

)3

· 0 = −3
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1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

P (X = x) P (Y = y)

The 3rd moment about the mean is used to describe the symmetry/skewness
of the graph about the mean. The distribution on the left has 3rd moment about
the mean, E((X−µ)3),equal to positive 3, and the distribution on the right has
3rd moment about the mean equal to negative 3.

4.20 Example. Let random variable X be the number of points on a regular
6-sided die. Compute mean and variance of X.

Solution. The mean is

µ = E(X) = 1 · 1
6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5.

The variance is

σ2 = E((X − µ)2) = (1− 3.5)2 · 1
6
+ (2− 3.5)2 · 1

6
+ (3− 3.5)2 · 1

6

+ (4− 3.5)2 · 1
6
+ (5− 3.5)2 · 1

6
+ (6− 3.5)2 · 1

6

=
17.5

6
≈ 2.9167

Using properties of expected values we have

E((X − µ)2) = E(X2 − 2µX + µ2)

= E(X2)− 2E(µX) + E(µ2)

= E(X2)− 2µE(X) + µ2

= E(X2)− 2µ · µ+ µ2

= E(X2)− µ2

We summarize this in a theorem.
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4.21 Theorem.
σ2 = E(X2)− µ2

4.22 Example. Redo previous die rolling problem with theorem.

Solution. We first need to find the mean µ:

µ = E(X) = 1 · 1
6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5.

Next we find E(X2):

E(X2) = 12 · 1
6
+ 22 · 1

6
+ 32 · 1

6
+ 42 · 1

6
+ 52 · 1

6
+ 62 · 1

6

=
91

6
≈ 15.1667

(this saves subtracting the mean in each term)

Then using the theorem, the variance is

σ2 = E(X2)− µ2 =
91

6
− (3.5)2 ≈ 2.9167.

4.23 Theorem. If X has variance σ2, then for constants a and b

var(aX + b) = a2σ2.

Proof. Let Y = aX + b, and let µ = E(X). Then

E(Y ) = E(aX + b) = aE(X) + b = aµ+ b.

For the variance

var(Y ) = E((Y − (aµ+ b))2)

= E((aX + b− aµ− b)2)

= E((aX − aµ)2)

= E(a2X2 − 2a2Xµ+ a2µ2)

= a2E(X2)− 2a2µE(X) + a2µ2

= a2(E(X2)− 2µ2 + µ2)

= a2(E(X2)− µ2)

= a2σ2
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4.6 Chebyshev’s Theorem

The next important theorem shows how σ describes the spread of the probability
distribution.

4.24 Theorem (Chebyshev’s Theorem). Let X be a random variable with mean
µ and standard deviation σ. Then for any k > 0,

P (|X − µ| < kσ) ≥ 1− 1

k2
.

In words, the probability that values for X lie within k standard deviations
of the mean is at least 1− 1

k2 .

|X − µ| < kσ ⇔ −kσ < X − µ < kσ ⇔ µ− kσ < X < µ+ kσ

Proof. Proof for continuous case: Using the definition of variance we have

σ2 = E((X − µ)2) =

∫ ∞

−∞
(x− µ)2f(x) dx

=

∫ µ−kσ

−∞
(x− µ)2f(x) dx+

∫ µ+kσ

µ−kσ

(x− µ)2f(x) dx

+

∫ ∞

µ+kσ

(x− µ)2f(x) dx

≥
∫ µ−kσ

−∞
(x− µ)2f(x) dx+

∫ ∞

µ+kσ

(x− µ)2f(x) dx

For x ≤ µ− kσ or x ≥ µ− kσ we have (x− µ)2 ≥ k2σ2 so

σ2 ≥
∫ µ−kσ

−∞
k2σ2f(x) dx+

∫ ∞

µ+kσ

k2σ2f(x) dx

= k2σ2

∫ µ−kσ

−∞
f(x) dx+

∫ ∞

µ+kσ

f(x) dx

⇒ 1

k2
≥
∫ µ−kσ

−∞
f(x) dx+

∫ ∞

µ+kσ

f(x) dx

The integrals on the right are P (X ≤ µ− kσ) and P (X ≥ µ+ kσ) or combined
P (|X − µ| ≥ kσ). Thus

P (|X − µ| < kσ) = 1− P (|X − µ| ≥ kσ) ≥ 1− 1

k2
.

(similar proof for discrete case)

4.25 Example. f(x) =

{
1
4x

− 1
2 for 0 < x ≤ 4

0 otherwise
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−2 2 4

0.2

0.4

0.6

0.8

1

µ

−2σ +2σ

µ = 4
3 ≈ 1.3333, σ = 8

√
5

15 ≈ 1.1926, P (|X − µ| < 2σ) ≈ 0.9642.

By Chebyshev: P (|X − µ| < 2σ) ≥ 1− 1
22 = 3

4 .

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

µ +σ−σ

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

µ +σ−σ

µ = 5, σ2 = 5.26 µ = 5, σ2 = 3.18

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

µ +σ−σ

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

µ +σ−σ

µ = 5, σ2 = 1.66 µ = 5, σ2 = 0.88
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4.26 Exercise. The mean score of an exam is 70, with a standard devia-
tion of 5. At least what percentage of the data set lies between 40 and
100?

4.27 Exercise. The mean age of a flight attendant is 40, with a standard
deviation of 8. At least what percent of the data set lies between 20 and
60?

Maclaurin series

From calculus, the Maclaurin series (also known as the Taylor series about 0)
of the function ex is given by

ex = 1 + x+
1

2!
x2 +

1

3!
x3 +

1

4!
x4 + . . . =

∞∑
i=0

1

i!
xi.

This approximates values of ex for different x, e.g. for x = 1

4∑
i=0

1

i!
xi = 1 + (1) +

1

2
(1)2 +

1

6
(1)3 +

1

24
(1)4 ≈ 2.708333

The more terms we use the better the approximation:

1 + (1) +
1

2
(1)2 +

1

6
(1)3 +

1

24
(1)4 +

1

120
(1)5 +

1

720
(16) ≈ 2.71806

Note that

e = 2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457138217852516642742746639193200305992181741359662904357290

(its decimal representation does not end, and has no repeating pattern).
The Maclaurin series (where it exists) for a function f(x) is

∞∑
i=0

f (i)(0)

i!
xi

where f (i)(0) is the ith derivative of f evaluated at 0.

For a Maclaurin series to exist all derivatives involved must exist. Second,
the infinite sum has to converge for the x values we plug in. The range of x
values where it does converge is called its interval of convergence.

A function’s Maclaurin series gives better approximations (i.e. requires fewer
terms) for x values which are close to 0.
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The derivative of a Maclaurin series can be found by taking the derivatives
of the individual terms in the sum (where defined).

For this course we do not need to know the theory of series expansions for
functions.

What we do need to know is the Maclaurin Series for ex,

ex = 1 + x+
1

2!
x2 +

1

3!
x3 +

1

4!
x4 + . . . =

∞∑
i=0

1

i!
xi,

and term-by-term differentiation,

d

dx

( ∞∑
i=0

fi(x)

)
=

∞∑
i=0

d

dx
(fi(x)) ,

in order to talk about moment generating functions.

4.7 Moment Generating Functions

4.28 Definition. Themoment generating function of a random variable X, where
it exists, is given by

discrete case: MX(t) = E(etX) =
∑
x

etx · f(x)

continuous case: MX(t) = E(etX) =

∫ ∞

−∞
etx · f(x) dx

where f(x) is the probability distribution/density of X.

We will see why this name is appropriate. Expanding the expression for
MX(t),

MX(t) =
∑
x

etx · f(x)

=
∑
x

(
1 + (tx) +

1

2!
(tx)2 +

1

3!
(tx)3 + . . .

)
· f(x)

=
∑
x

f(x) + (tx)f(x) +
(tx)2

2!
f(x) +

(tx)3

3!
f(x) + . . .

=
∑
x

f(x) + t
∑
x

xf(x) +
t2

2!

∑
x

x2f(x) +
t3

3!

∑
x

x3f(x) + . . .
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we see the rth moments about the origin appearing in the terms of the series.

MX(t) =
∑
x

f(x) + t
∑
x

xf(x) +
t2

2!

∑
x

x2f(x) +
t3

3!

∑
x

x3f(x) + . . .

To extract the ith moment, we take the ith derivative with respect to t, and
evaluate at t = 0.

For example, to get the 2nd moment:

d2

dt2
MX(t)

∣∣∣∣
t=0

=
d2

dt2

(∑
x

f(x) + t
∑
x

xf(x) +
t2

2!

∑
x

x2f(x) +
t3

3!

∑
x

x3f(x) + . . .

∣∣∣∣∣
t=0

)

Take 2nd derivative of each term with respect to t,

=

(
0 + 0 +

∑
x

x2f(x) + t
∑
x

x3f(x) +
t2

2

∑
x

x4f(x) + . . .

∣∣∣∣∣
t=0

)

Letting t = 0 gives

d2

dt2
MX(t)

∣∣∣∣
t=0

=
∑
x

x2f(x) = E(X2).

4.29 Example. Let X be a discrete random variable with distribution f(x) =
1
8

(
3
x

)
for x = 0, 1, 2, 3.

The moment generating function for X is

MX(t) =

3∑
x=0

etx ·
(
1

8

(
3

x

))
=

1

8

(
e0
(
3

0

)
+ et

(
3

1

)
+ e2t

(
3

2

)
+ e3t

(
3

3

))
=

1

8
(1 + et)3

To find the mean (1st moment about the origin):

d

dt
MX(t)

∣∣∣∣
t=0

=
d

dt

1

8
(1 + et)3

∣∣∣∣
t=0

=
3

8
(1 + et)2et

∣∣∣∣
t=0

=
3

8
22 =

3

2

Since we already have the moment generating function MX(t) = 1
8 (1 + et)3,

we can quickly compute other moments.



4.8. BIVARIATE MOMENTS 89

The second moment about the origin, E(X2):

d2

dt2
MX(t)

∣∣∣∣
t=0

=
d2

dt2
1

8
(1 + et)3

∣∣∣∣
t=0

=
d

dt

3

8
(1 + et)2et

∣∣∣∣
t=0

=
6

8
(1 + et)e2t +

3

8
(1 + et)2et

∣∣∣∣
t=0

= 3.

These two could now be used to find the variance, σ2 = E(X2)− µ2. Continue
this process to find higher order moments.

Properties of Moment Generating Functions

We will only briefly touch on moment generating functions for now, and come
back to them when we need to use them.

One advantage of knowing the moment generating function for a random
variable, is that it can be used to find the moment generating function for
related random variables via the following theorem.

4.30 Theorem. If MX(t) is the moment generating function for X and a and b
are nonzero constants, then

1.

MX+a(t) = eat ·MX(t)

2.

MbX(t) =MX(bt)

3.

MX+a
b

(t) = e
a
b t ·MX

(
t

b

)

4.8 Bivariate Moments

Product Moments about the Origin

We have already discussed the expected value of a bivariate function g(X,Y ),
where E(g(X,Y )) =

∑
x

∑
y g(x, y) · f(x, y).

The following is a special case of this:
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4.31 Definition. The rth and sth product moment about the origin of X and Y
is the expected value of XrY s:

discrete: E(XrY s) =
∑
x

∑
y

xrys · f(x, y)

continuous: E(XrY s) =

∫ ∞

−∞

∫ ∞

−∞
xrys · f(x, y) dx dy

for r = 0, 1, 2, . . . , s = 0, 1, 2, . . . .

We will denote E(X) by µX and E(Y ) by µY .

Product Moments about the Means

4.32 Definition. The rth and sth product moment about the mean of X and Y
is the expected value of (X − µX)r(Y − µY )

s:

discrete: E((X − µX)r(Y − µY )
s)

=
∑
x

∑
y

(x− µX)r(y − µY )
s · f(x, y)

continuous: E((X − µX)r(Y − µY )
s)

=

∫ ∞

−∞

∫ ∞

−∞
(x− µX)r(y − µY )

s · f(x, y) dx dy

Covariance

4.33 Definition. The 1st and 1st product moment about the means of X and Y
is called the covariance of X and Y . It is commonly denoted σXY , or cov(X,Y ).

Summary:

µX = E(X) =
∑
x

∑
y

x · f(x, y)

µY = E(Y ) =
∑
x

∑
y

y · f(x, y)

cov(X,Y ) = E((X − µX)(Y − µY )) =
∑
x

∑
y

(x− µX)(y − µY ) · f(x, y)

(discrete case shown here, continuous case is analogous)
The covariance of describes the relationship between X and Y .
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If there is a high probability that large X values and large Y values appear
together, then the covariance is positive (or small X with small Y ). On the
other hand large/small X values occurring with small/large Y values is more
likely, then the covariance will be negative. (again, only discrete shown above)

Just as with σ2 for single variable case, we have a “shortcut” formula:

4.34 Theorem.

cov(X,Y ) = σXY = E(XY )− E(X)E(Y ) = E(XY )− µXµY

x
0 1 2

0
6

36

12

36

3

36

y 1
8

36

6

36

2
1

36

4.35 Example. In the caplet example, find the covariance of X and Y .

Solution. We start by finding µX and µY :

µX = E(X) =
∑
x

∑
y

x · f(x, y) =
∑
x

x
∑
y

f(x, y) =
∑
x

x · g(x)

µY = E(Y ) =
∑
x

∑
y

y · f(x, y) =
∑
y

y
∑
x

f(x, y) =
∑
y

y · h(y)

where g(x) and h(y) are the marginal distributions of x and y resp.

x
0 1 2

0
6

36

12

36

3

36

21

36

y 1
8

36

6

36

14

36

2
1

36

1

36

15

36

18

36

3

36
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Thus

µX = 0 · 15
36

+ 1 · 18
36

+ 2 · 3

36
=

24

36

µY = 0 · 21
36

+ 1 · 14
36

+ 2 · 1

36
=

16

36

Using σXY = E(XY )− µXµY , we now need E(XY ):

=

2∑
x=0

2∑
y=0

(xy) · f(x, y)

= (0 · 0) · 6

36
+ (0 · 1) · 8

36
+ (0 · 2) · 1

36

+ (1 · 0) · 12
36

+ (1 · 1) · 6

36
+ (2 · 0) · 3

36

=
6

36
.

So we have σXY = 6
36 − ( 2436 )(

16
36 ) = − 7

54 ≈ −0.1296.

Covariance and Independence

Recall that joint random variables X and Y are independent if and only if
f(x, y) = g(x) · h(y); i.e. their joint distribution is the product of the marginal
distributions. From this it follows that:

4.36 Theorem. If X and Y are independent, then

E(XY ) = E(X) · E(Y )

and σXY = 0. (exercise the proof)

This theorem is only a one-way implication as seen in the next example.

4.37 Example. Let X and Y be discrete random variables with joint distribution
given by,

x
-1 0 1

-1
1

6

1

3

1

6

y 0 0 0 0

1
1

6
0

1

6

Find cov(X,Y ) and determine whether X and Y are independent.
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To find cov(X,Y ) first we need the marginal distributions, g(x) and h(y).

x
-1 0 1

-1
1

6

1

3

1

6

2

3

y 0 0 0 0 0

1
1

6
0

1

6

1

3

1

3

1

3

1

3

Then we can find µX and µY :

µX =
∑
x

x · g(x) = (−1) · 1
3
+ (0) · 1

3
+ (1) · 1

3
= 0

µY =
∑
y

y · h(y) = (−1) · 2
3
+ (0) · 1

3
+ (1) · 1

3
= −1

3

Next we need E(XY ) =
∑

x

∑
y xy · f(x, y):

= ((−1) · (−1)) · 1
6 + ((−1) · 0) · 0 + ((−1) · 1) · 1

6 + (0 · (−1)) · 1
3 + (0 · 0) · 0 + (0 ·

1) · 0 + (1 · (−1)) · 1
6 + (1 · 0) · 0 + (1 · 1) · 1

6 = 0.

So cov(X,Y ) = E(XY )− µXµY = 0− (0)(− 1
3 ) = 0.

The random variables are not independent however, as can be seen by the
example that f(−1,−1) = 1

6 ̸= g(−1) · h(−1) = 2
9 .

x
0 1 2

0
6

36

12

36

3

36

21

36

y 1
8

36

6

36

14

36

2
1

36

1

36

15

36

18

36

3

36

Are the random variables X and Y of the caplet example independent?
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No. We found that cov(X,Y ) = − 7
54 ̸= 0. Therefore they could not be

independent.

4.38 Example. Let X and Y be jointly continuous random variables with joint
density

f(x) =

{
3x2y
28 for 1 < x < 2, 1 < y < 3

0 otherwise

Find the covariance of X and Y and determine whether they are indepen-
dent.

4.9 Conditional Expectations

Earlier we defined conditional probability f(x|y), for joint random variables X
and Y , we can also talk about conditional expectation.

4.39 Definition. Let X and Y have probability distribution/density f(x, y), and
let u(X) be some function of X. The conditional expected value of u(X) given
Y = y is

discrete case: E(u(X)|Y = y) =
∑
x

u(x) · f(x|y)

continuous case: E(u(X)|Y = y) =

∫
x

u(x) · f(x|y) dx

The special case E(X|Y = y) is called the conditional mean of X given Y = y.
(we may write E(u(X)|Y = y) more compactly as E(u(X)|y))

4.40 Example. In the caplet example:

x
0 1 2

0
6

36

12

36

3

36

21

36

y 1
8

36

6

36

14

36

2
1

36

1

36

15

36

18

36

3

36

Find the expected value (or conditional mean) of X given that Y = 1.
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Solution. By definition,

E(X|1) =
∑
x

xf(x|1).

Recall that f(x|y) = f(x,y)
h(y) , and so

f(0|1) = 8

14
, f(1|1) = 6

14
, f(2|1) = 0.

Therefore we have

E(X|1) = 0 · 8

14
+ 1 · 6

14
+ 2 · 0 =

6

14
≈ 0.4286.

4.41 Example. Let X be the amount a salesperson person spends on gas in a
day, and Y be the amount of money for which they are reimbursed. The joint
density of X and Y is

f(x, y) =

{
1
25

(
20−x

x

)
for 10 < x < 20, x2 < y < x

0 otherwise

(gives the probability (density) that they will be reimbursed y dollars after
spending x dollars)

Find, f(y|x), the conditional probability of Y given X = x, and use it to
find the probability of being reimbursed at least $8 given that $12 we spent.
What is the expected reimbursement given that $12 were spent?

4.10 Expectation by Conditioning

Let E(X|Y ) denote the conditional expectation of X given an arbitrary value
for y; i.e. E(X|Y ) is the function of Y which outputs E(X|Y = y) for whatever
y we choose. This makes E(X|Y ) itself a random variable, and it can be helpful
in computing expected values in certain situations.

4.42 Theorem. Let X and Y be joint random variables. Then

E(X) = E(E(X|Y ))

This says

discrete case: E(X) =
∑
y

E(X|Y = y)h(y)

continuous case: E(X) =

∫ ∞

−∞
E(X|Y = y)h(y) dy

where h(y) is the marginal distribution/density for Y .



96 CHAPTER 4. MATHEMATICAL EXPECTATION

Proof. Let f(x, y) be the joint distribution for discrete random variables X and
Y , and g(x), h(y) their respective marginal distributions. Then∑

y

E(X|Y = y)h(y) =
∑
y

∑
x

xf(x|y)h(y)

=
∑
y

∑
x

x
f(x, y)

h(y)
h(y)

=
∑
y

∑
x

xf(x, y)

=
∑
x

x
∑
y

f(x, y)

=
∑
x

xg(x)

= E(x)

(Continuous case similar)

4.43 Example. You are wandering lost in a cave and arrive at a spot with three
tunnel entrances. Tunnel 1 leads to the exit after walking for 3 hours, tunnel 2
leads back to this same spot after 5 hours of walking, and tunnel 3 leads back to
this same spot after 7 hours of walking. If you return to this spot, the 3 tunnel
entrances are indistinguishable, and you will proceed by randomly choosing one
of the 3 tunnels. What is your expected length of time needed to exit the cave?

Solution. Let X be the number of hours until the exit is reached, and Y be the
tunnel you choose first. By the theorem

E(X) = E(E(X|Y )) =

2∑
y=0

E(X|Y = y)h(y) =
1

3

2∑
y=0

E(X|Y = y)

where h(y) = 1
3 as each tunnel is equally likely. Now

E(X|Y = 1) = 3, E(X|Y = 2) = 5 + E(X), [E(X|Y = 1) = 7 + E(X)

since tunnel 2 or 3 returns to the same spot after 5 or 7 hours (respectively)
and puts you in the position you started. Then

E(X) =
1

3
(3 + 5 + E(X) + 7 + E(X)),

from which we can solve E(X) = 15.



Chapter 5

Special Probability
Distributions

This chapter presents some commonly used probability distributions for discrete
random variables.

Having a pre-determined probability distribution to model a chance experi-
ment prevents from having to re-derive its properties each time (e.g. mean and
variance).

The models presented depend on parameters; input values which tailor the
probability distribution to the particular example.

In some cases the values of the distribution for a range of parameters are
recorded in a table which can be used to evaluate probabilities, rather than
computing the sums directly, (or integrating in the case of continuous random
variables). This is not only a convenience, in some cases it may be impractical
to compute such values on the spot, or impossible if, for example, no exact
expression exists for an integral.

5.1 The Discrete Uniform Distribution

Suppose a random variable X has a finite range of k values, {x1, x2, . . . , xk}.
Then X has discrete uniform distribution if

f(x) =
1

k

for each x ∈ {x1, x2, . . . , xk}. In other words each outcome is equally likely.
(example: rolling a balanced die)

97
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Our only parameter in this case is k. For the discrete uniform distribution:

µ =

k∑
i=1

xif(xi) =

∑k
i=1 xi
k

.

σ2 =

k∑
i=1

(xi − µ)2f(xi) =

∑k
i=1(xi − µ)2

k
=

∑k
i=1 x

2
i

k
−

(∑k
i=1 xi
k

)2

5.2 The Bernoulli Distribution

Consider an experiment with two possible outcomes, either success or failure.
(example: single coin toss)

Assign random variable X the value 1 for success and 0 for failure.

If the probability of success is θ, then the probability of a failure is 1− θ.

In this case X is called a Bernoulli random variable and has Bernoulli dis-
tribution given by

f(x; θ) = θx(1− θ)1−x for x = 0, 1.

An experiment with a Bernoulli distribution is referred to as a Bernoulli trial.

5.1 Example. If X is a Bernoulli random variable show that

µ = θ,

and
σ2 = θ(1− θ)

5.3 The Binomial Distribution

Now consider an experiment with repeated trials, in which the outcome of each
trial is either a success or failure, and the trials are independent.

Random variable X will denote the number of successes, the probability of
success is known to be θ, and n is the given number of trials in the experiment.

Then X has binomial distribution which is given by

b(x;n, θ) =

(
n

x

)
θx(1− θ)n−x for x = 0, 1, . . . , n.

Random variable X is called a binomial random variable if and only if it has
this distribution.
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The Bernoulli distribution is the special case of the binomial distribution
when n = 1; a single trial experiment.

5.2 Example. Some examples of binomial random variables:

� Number of heads in 35 flips of a coin with 0.63 probability of heads and
0.37 probability of tails.

P (17 heads) = b(17; 35, 0.63)

=

(
35

17

)
(0.63)17(0.37)18 ≈ 0.02973.

� There is a 6.6% chance that a person has O- blood type. In a selection of
20 people what is the probability that 5 of them will have O- blood.

P (5 people) = b(5; 20, 0.066)

=

(
20

5

)
(0.066)5(0.934)15 ≈ 0.006972.

5.3 Example. Find the probability that seven of ten people will recover from a
disease if we assume independence and the probability of 0.80 that any one of
them will recover from the disease.

b(7; 10, 0.80) =

(
10

7

)
(0.80)7(0.20)3 ≈ 0.2013.

5.4 Theorem.

b(x;n, θ) = b(n− x;n, 1− θ)

For example,

b(7; 11, 0.75) = b(4; 11, 0.25) = 0.1721

(prove this theorem as an exercise)

This table gives the binomial distribution when n = 6 for different values of
θ up to 0.50.

x
(
n
x

)
0.01 0.05 0.10 0.15 0.20 0.25

0 1 0.9415 0.7351 0.5314 0.3771 0.2621 0.1780
1 6 0.0571 0.2321 0.3543 0.3993 0.3932 0.3560
2 15 0.0014 0.0305 0.0984 0.1762 0.2458 0.2966
3 20 0.0021 0.0146 0.0415 0.0819 0.1318
4 15 0.0001 0.0012 0.0055 0.0154 0.0330
5 6 0.0001 0.0004 0.0015 0.0044
6 1 0.0001 0.0002



100 CHAPTER 5. SPECIAL PROBABILITY DISTRIBUTIONS

x
(
n
x

)
0.30 0.35 0.40 0.45 0.49 0.50

0 1 0.1176 0.0754 0.0467 0.0277 0.0176 0.0156
1 6 0.3025 0.2437 0.1866 0.1359 0.1014 0.0938
2 15 0.3241 0.3280 0.3110 0.2780 0.2436 0.2344
3 20 0.1852 0.2355 0.2765 0.3032 0.3121 0.3125
4 15 0.0595 0.0951 0.1382 0.1861 0.2249 0.2344
5 6 0.0102 0.0205 0.0369 0.0609 0.0864 0.0938
6 1 0.0007 0.0018 0.0041 0.0083 0.0183 0.0156

5.5 Example.
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For each graph of b(x;n, θ) we have n = 6. Determine which of these has
θ = 0.1, 0.25, 0.5, and 0.75

5.6 Example. Screws produced by a certain company have a 0.01 probability of
begin defective (independently of one another). The company sells the screws
in packaged of 10 and will replace the package if more than 1 screw is defective
in the package.

What is the probability that more than 1 screw is defective?
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Solution. Let X be the number of defective screws in a package. Then X has
binomial distribution with n = 10 and θ = 0.01; i.e. the probability of having x
defective screws in a package is

b(x; 10, 0.01) =

(
10

x

)
(0.01)x(0.99)10−x

The probability that more than 1 screw is defective is

P (X ≥ 2) =

10∑
x=2

(
10

x

)
(0.01)x(0.99)10−x

However, it is easier to calculate as

P (X ≥ 2) = 1− P (X ≤ 1) = 1− P (X = 0)− P (X = 1)

= 1−
(
10

0

)
(0.01)0(0.99)10 −

(
10

1

)
(0.01)1(0.99)9 ≈ 0.04.

Moments of the Binomial Distribution

5.7 Theorem. The mean and variance of the binomial distribution:

µ = nθ, σ2 = nθ(1− θ)

See text for direct proof, or use:

5.8 Theorem. The moment generating function for a random variable with the
binomial distribution b(x;n, θ) is

MX(t) = (1 + θ(et − 1))n.

Proof.

MX(t) = E(etX)

=

n∑
x=0

(etx) ·
(
n

x

)
θx(1− θ)n−x

=

n∑
x=0

(
n

x

)
(etθ)x(1− θ)n−x

= (etθ + (1− θ))n (binomial expansion thereom)

= (1 + θ(et − 1))n.
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Finding the mean from the moment generating function:

µ =
d

dt
MX(t)

∣∣∣∣
t=0

=
d

dt
(1 + θ(et − 1))n

∣∣∣∣
t=0

= n(1 + θ(et − 1))n−1 · (θet)
∣∣
t=0

= n(1 + θ(e0 − 1))n−1 · (θe0)
= nθ.

Next we want the second moment about the origin:

E(X2) =
d2

dt2
MX(t)

∣∣∣∣
t=0

=
d2

dt2
(1 + θ(et − 1))n

∣∣∣∣
t=0

=
d

dt
nθet(1 + θ(et − 1))n−1

∣∣∣∣
t=0

= nθet(1 + θ(et − 1))n−1

+n(n− 1)θet(1 + θ(et − 1))n−1 · (θet)
∣∣
t=0

= nθ + n(n− 1)θ2

Finally,

σ2 = E(X2) = µ2 = nθ + n(n− 1)θ2 − (nθ)2 = nθ − nθ2 = nθ(1− θ).

5.9 Theorem. Let X be a binomial random variable and let Y = X
n . Then

E(Y ) = θ, σ2
Y =

θ(1− θ)

n
.

Random variable Y denotes the proportion of successes in n trials.

By Chebyshev’s Theorem, with C = kσ, or k = C
σ we have

P (|Y − θ| < C) ≥ 1− 1

k2
= 1− 1

(C
2

σ2 )
= 1− θ(1− θ)

C2n

(µ = θ in this case)
Thus for any value of C > 0 we have

P

(∣∣∣∣Xn − θ

∣∣∣∣ < C

)
≥ 1− θ(1− θ)

C2n
.

When n is large, the fraction on the right side gets small, and so

lim
n→∞

P

(∣∣∣∣Xn − θ

∣∣∣∣ < C

)
= 1.

But this holds for any C > 0, no matter how small.
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In this case, the more trials we perform, the more likely it is that the pro-
portion of successes will be close to the probability of a success θ.

Example: In repeatedly flipping a balanced coin, the more flips we perform
(n), the more likely that the proportion of heads obtained (Xn ) will be 0.5 (θ).

5.4 The Negative Binomial Distribution

The Binomial distribution gives the probability of getting x successes in n trials.

Suppose we want to know the probability that the kth success occurs pre-
cisely on trial x.

For the kth success to occur on the xth trial, there must be exactly k − 1
success on the first x−1 trials, and consequently x−1− (k−1) = x−k failures.

If θ is the probability of a success on a given trial then the probability of
getting k − 1 successes in x− 1 trails is

b(k − 1;x− 1, θ) =

(
x− 1

k − 1

)
θk−1(1− θ)x−k.

Then the probability that the kth success is on trial x is

θ · b(k − 1;x− 1, θ) =

(
x− 1

k − 1

)
θk(1− θ)x−k.

A random variable X has a negative binomial random variable if and only if
it has negative binomial distribution,

b∗(k − 1;x− 1, θ) =

(
x− 1

k − 1

)
θk(1− θ)x−k

for x = k, k + 1, k + 2, . . . .

It follows that

5.10 Theorem.

b∗(x; k, θ) =
k

x
· b(k, x, θ)

So table values for the binomial distribution can be used to find values for
the negative binomial distribution.

Mean and Variance of the Negative Binomial Distribution

We can use the theorem to compute the mean and variance from that of the
binomial distribution. They are

µ =
k

θ
, σ2 =

k

θ

(
1

θ
− 1

)
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The Geometric Distribution

The special case when k = 1 (first success appears in trial x) is called the
geometric distribution:

g(x; θ) = b∗(x; 1, θ) = θ(1− θ)x−1.



Chapter 6

Special Probability Densities

Just as was done in Chapter 5, we now present some common probability den-
sities in the case of a continuous random variable.

6.1 The Uniform Distribution

A continuous random variable X is said to have uniform distribution if and only
if its probability density function is given by

u(x; a, b) =

{
1

b−a for a < x < b

0 otherwise

This means that if (a1, b1) and (a2, b2) are two intervals of equal length inside
of (a, b), then P (a1 < X < b2) = P (a2 < X < b2).

x

u(x; a, b)

a

1
b−a

b

105
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6.2 The Normal Distribution

A continuous random variable X has normal distribution, and is called a normal
random variable if and only if its probability density is given by

n(x;µ, σ) =
1

σ
√
2π
e−

1
2 (

x−µ
σ )

2

for all x ∈ R, where σ > 0.

Showing that this function integrates to 1 over R requires a trick involving
a change of variables to polar coordinates (found in a multivariable calculus
course); we will omit this here and accept that this is a valid probability density
for any µ and any σ > 0.

Plot of the Normal Distribution when µ = 0, σ = 0.5:

−2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

Plot of the Normal Distribution when µ = 0, σ = 2:

−3 −2 −1 0 1 2 3

0.1

0.15

0.2
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Plot of the Normal Distribution when µ = 5, σ = 2.3:

−2 0 2 4 6 8 10 12

5 · 10−2

0.1

0.15

Plot of the Normal Distribution when µ = 0, σ = 1:

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

Plot of Normal Distributions with µ = 0:
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−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

Red - σ = 0.5, Green - σ = 1, Blue - σ = 2

n(x;µ, σ) =
1

σ
√
2π
e−

1
2 (

x−µ
σ )

2

One thing to notice about these graphs is their “bell” shape. There is a
higher probability density in the middle, which rapidly decreases as we move
outward.

The next thing to notice is that these graphs have symmetry about the value

µ, which is due to the
(
x−µ
σ

)2
in the exponent.

It also appears that the σ parameter controls the dispersion of the probabil-
ity.

Indeed, µ and σ are the mean and standard deviation of a normally dis-
tributed random variable X, as we will see.

Moment Generating Function

MX(t) =

∫ ∞

−∞
etx · 1

σ
√
2π
e−

1
2 (

x−µ
σ )

2

dx

=
1

σ
√
2π

∫ ∞

−∞
e−

1
2σ2 (−2xtσ2+(x−µ)2) dx

In the exponent we have:

−2xtσ2 + (x− µ)2 = −2xtσ2 + x2 − 2xµ+ µ2 = x2 − 2x(µ+ tσ2) + µ2.

Completing the square gives:

x2 − 2x(µ+ tσ2) + µ2 = (x− (µ+ tσ2))2 − 2µtσ2 − t2σ4.
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This allows us to write

MX(t) = eµt+
1
2 t

2σ2

(
1

σ
√
2π

∫ ∞

−∞
e
− 1

2

(
x−(µ+tσ2)

σ

)2

dx

)
= eµt+

1
2 t

2σ2

Mean and Variance

The moment generating function for normally distributed random variable X
is:

MX(t) = eµt+
1
2 t

2σ2

Show that the mean and variance of X are indeed µ and σ2.

First derivative:

d

dt
MX(t) =

d

dt
eµt+

1
2 t

2σ2

= eµt+
1
2 t

2σ2

· (µ+ σ2t)

Second derivative:

d2

dt2
MX(t) =

d

dt

(
µeµt+

1
2 t

2σ2

+ σ2teµt+
1
2 t

2σ2
)

= µeµt+
1
2 t

2σ2

· (µ+ σ2t) + σ2eµt+
1
2 t

2σ2

+ σ2teµt+
1
2 t

2σ2

· (µ+ σ2t)

Setting t = 0 in both gives:

d

dt
MX(t) = µ

d2

dt2
MX(t) = µ2 + σ2

Therefore the mean, E(X), is µ and the variance is E(X2)− µ2 = σ2.

The Standard Normal Distribution

The normal distribution with µ = 0 and σ = 1 is called the standard normal
distribution.

n(x; 0, 1) =
1√
2π
e−

1
2x

2

Probabilities for the standard normal distribution may be found by way of a
table of “pre-calculated” probabilities.

For example, the table below gives P (0 ≤ X ≤ z) for various z values.
Graphically this looks like,
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−4 −2 2 4

0.2

0.4

0.6

0.8

1

z

Standard Normal Table

The following table contains values for probabilities P (0 ≤ Z < z), where Z has
standard normal distribution.

Here is an example showing how to find P (0 ≤ Z < 1.52) from the table:
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A plot of the standard normal density function, where the shaded region is
P (0 ≤ Z < 1.52):

−4 −2 2 4

0.1

0.2

0.3

P (0 ≤ X ≤ 1.52)

= 0.4357

We noted earlier that µ, in this case 0, is the midpoint of the graph. Thus
to find P (X ≤ z), we look up our value of z in the table, then add 0.5.
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−3 −2 −1 1 2 3

0.1

0.2

0.3

P (X ≤ 0.87) = 0.3087 + 0.5 = 0.8087
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−4 −2 2 4

0.1

0.2

0.3

−4 −2 2 4

0.1

0.2

0.3

−4 −2 2 4

0.1

0.2

0.3

Adding the first two areas gives the third.

If z < 0, we find P (X ≤ z) by finding 0.5− P (X ≤ |z|).
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−3 −2 −1 1 2 3

0.1

0.2

0.3

P (X ≤ −1.44) = 0.5− 0.4251 = 0.0749

−4 −2 2 4
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0.3

−4 −2 2 4

0.1

0.2

0.3

−4 −2 2 4

0.1

0.2

0.3

The difference of the first two areas is equal to the third.

If X has standard normal distribution, find P (−0.75 ≤ X ≤ 1.22)
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−3 −2 −1 1 2 3

0.1

0.2

0.3

To find P (−0.75 ≤ X ≤ 1.22), add P (0 ≤ X ≤ 0.75) to P (0 ≤ X ≤ 1.22)
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P (−0.75 ≤ X ≤ 1.22) = 0.2734 + 0.3888 = 0.6622

−4 −2 2 4

0.1

0.2

0.3

−4 −2 2 4

0.1

0.2

0.3

−4 −2 2 4

0.1

0.2

0.3

P (0 ≤ X ≤ 0.75) + P (0 ≤ X ≤ 1.22) = P (−0.75 ≤ X ≤ 1.22)

The sum of the first two areas equals the third. (This uses the symmetry of the
graph)

A couple of rules when using the table:

� For z values not found on the table we may simply choose the closest
value.

� If our z value is exactly the midpoint between two z values on the table,
then we can average the two probabilities.
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6.1 Theorem. If X has a normal distribution with mean µ and standard devia-
tion σ then

Z =
X − µ

σ
is a random variable having the standard normal distribution.

This allows us to compute probabilities for non-standard normal distribu-
tions with the standard normal table.

Proof. Let Z = X−µ
σ . First note that

x1 < X < x2 ⇔ z1 =
x1 − µ

σ
< Z <

x2 − µ

σ
= z2

Then, using the substitution rule for integrals,

P (x1 < X < x2) =
1

σ
√
2π

∫ x2

x1

e−
1
2 (

x−µ
σ )

2

dx

=
1√
2π

∫ z2

z1

e−
1
2 (z)

2

dz

= P (z1 < Z < z2).

Therefore P (x1 < X < x2) = P
(
x1−µ

σ < Z < x2−µ
σ

)
, and we are able to look

this up on the table.

Non-standard Normal Distribution

6.2 Example. Let X be a continuous random variable with normal distribution
n(x; 70, 4); i.e. µ = 70, σ = 4. Find

� P (68 ≤ X ≤ 74)

By the theorem

P (68 ≤ X ≤ 74) = P

(
68− 70

4
≤ Z ≤ 74− 70

4

)
= P (−0.5 ≤ Z ≤ 1)

Then, by the symmetry in the graph,

P (−0.5 ≤ Z ≤ 1) = P (Z ≤ 0.5) + P (Z ≤ 1)

= 0.1915 + 0.3413 = 0.5328

6.3 The Normal Approximation of the Binomial Dis-
tribution

If X is a random variable with binomial distribution b(x;n, θ), then the nor-
mal distribution n(x;nθ,

√
nθ(1− θ)), with mean nθ and standard deviation√

nθ(1− θ), gives an approximation of the binomial distribution. (see text)
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To use this approximation, we need to “convert” the discrete binomial ran-
dom variable to the continuous case. Here P (X = k) will be a approximated
with the normal distribution by integrating from k − 0.5 to k + 0.5. This is
called the continuity correction.

6.3 Example. Find the probability of getting 6 heads in 16 flips of a balanced
coin. (binomial distribution)

Approximate this with the normal distribution.
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