Mathematics 1550 H - Probability I: Introduction to Probability
 Trent University, Winter 2023
 Some Common Probability Distributions - The Short Form*

Discrete Distributions

1. Discrete Uniform. n equally likely outcomes for some $n \geq 1$.

Probability function: $m(\omega)=\frac{1}{n}$.
Expected value and variance of a random variable X on Ω depend on just what values X assigns to each outcome $\omega \in \Omega$.
2. Bernoulli Trial. Two outcomes with probability of success p and of failure $q=1-p$. X counts successes.
Probability function: $m(1)=P($ success $)=p$ and $m(0)=P($ failure $)=q$.
Expected value: $\mu=E(X)=p \quad$ Variance: $\sigma^{2}=V(X)=p q$
3. Binomial. n Bernoulli trials, with probability of success p and of failure $q=1-p$. X counts successes.
Probability function: $m(k)=P(k$ successes $)=\binom{n}{k} p^{k} q^{n-k}$, where $0 \leq k \leq n$.
Expected value: $\mu=E(X)=n p \quad$ Variance: $\sigma^{2}=V(X)=n p q$
4. Geometric. Bernoulli trials repeated until the first success, with probability of success p and of failure $q=1-p . X$ counts the number of trials required.
Probability function: $m(k)=P$ (first success on k th trial $)=q^{k-1} p$, where $k \geq 1$.
Expected value: $\mu=E(X)=\frac{1}{p} \quad$ Variance: $\sigma^{2}=V(X)=\frac{q}{p^{2}}$
5. Negative Binomial. Bernoulli trials repeated until the k th success, with probability of success p and of failure $q=1-p . X$ counts the number of trials required.
Probability function: $m(x)=P(k$ success on x th trial $)=\binom{x-1}{k-1} p^{k} q^{x-k}$
Expected value: $\mu=E(X)=\frac{k}{p} \quad$ Variance: $\sigma^{2}=V(X)=\frac{k q}{p^{2}}$

Continuous Distributions

1. Continuous Uniform.

Density function: $f(t)=\left\{\begin{array}{cl}\frac{1}{b-a} & a \leq t \leq b \\ 0 & \text { otherwise }\end{array}\right.$
Expected value: $\mu=E(X)=\frac{a+b}{2} \quad$ Variance: $\sigma^{2}=V(X)=\frac{(b-a)^{2}}{12}$
2. Exponential.

Density function: $f(t)=\left\{\begin{array}{cc}\lambda e^{-\lambda t} & t \geq 0 \\ 0 & t<0\end{array}\right.$
Expected value: $\mu=E(X)=\frac{1}{\lambda} \quad$ Variance: $\sigma^{2}=V(X)=\frac{1}{\lambda^{2}}$

[^0]3. Standard normal.

Density function: $\varphi(t)=\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}$
Expected value: $\mu=E(X)=0 \quad$ Variance: $\sigma^{2}=V(X)=1$
4. Normal. ... with mean μ and standard deviation σ.

Density function: $f(t)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(t-\mu)^{2} / 2 \sigma^{2}}$
Expected value: $E(X)=\mu \quad$ Variance: $V(X)=\sigma^{2}$

[^0]: * With apologies to the creators of Buckaroo Banzai. "Remember: No matter where you go, there you are."

