1. Let X be a random variable with the following distribution

$$
\begin{array}{c|cccc}
x & -3 & -1 & 2 & 5 \\
\hline P(X=x) & 0.3 & 0.1 & 0.2 & 0.4
\end{array}
$$

(a) Find the expected value of X.
(b) Find the variance of X.
(c) Find the 3rd moment about the mean of X.
2. Let Y be a random variable with the following distribution

$$
\begin{array}{c|ccccc}
y & 2 & 3 & 4 & 5 & 6 \\
\hline P(Y=y) & \frac{1}{9} & \frac{2}{9} & \frac{3}{9} & \frac{2}{9} & \frac{1}{9}
\end{array}
$$

(a) Find the expected value of Y.
(b) Find the variance of Y.
(c) Find the 3rd moment about the mean of Y.
3. Let X be a continuous random variable with probability density

$$
f(x)= \begin{cases}\frac{1}{10}\left(3 x^{2}+1\right) & \text { for } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Find the mean and variance of X.
4. Write the definition for the 3rd moment about the mean, and then devise a "shortcut" formula in terms of the moments about the origin. Do this using properties of expected value as was done to obtain a formula for the second moment about the mean.
5. Derive an expression for $\left.E\left((X-\mu)^{4}\right)\right)$ which involves only terms $E\left(X^{4}\right), E\left(X^{3}\right), E\left(X^{2}\right), E(X)$. In other words, find a "shortcut" formula which allows us to compute $\left.E\left((X-\mu)^{4}\right)\right)$ from moments around the origin.
6. Find $\mu=E(X), E\left(X^{2}\right), \sigma^{2}$ (variance) and σ (standard deviation) for the discrete random variable X that has the probability distribution $f(x)=\frac{1}{2}$ for $x=-2$ and $x=2$.
7. If the probability density of X is given by

$$
f(x)= \begin{cases}630 x^{4}(1-x)^{4} & \text { for } 0<x<1 \\ 0 & \text { elsewhere }\end{cases}
$$

find the probability that X will take on a value within two standard deviations of the mean and compare this probability with the lower bound provided by Chebyshev's Theorem.
8. A study of the nutritional value of a certain kind of bread shows that the amount of thiamine (vitamin B_{1}) in a slice may be looked upon as a random variable X with $\mu=0.260$ milligrams and $\sigma=0.005$ milligrams. According to Chebyshev's Theorem, what interval of thiamine content values about μ must we consider, in order to include:
(a) at least 35 of every 36 slices of bread?
(b) at least 143 of every 144 slices of bread?
9. Let X be a continuous random variable with probability density

$$
f(x)= \begin{cases}\frac{1}{6} x+\frac{1}{12} & \text { for } 0 \leq x \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the mean μ of X.
(b) Find the variance σ^{2} of X.
(c) Compute $P(1 \leq X \leq 2)$.
(d) Find $P\left(|X-\mu|<\frac{3}{2} \sigma\right)$, and compare this value with what Chebyshev's Theorem tells us.
10. Let X be a continuous random variable with probability density given by

$$
f(x)= \begin{cases}\frac{1}{8}(x+1) & \text { for } 2 \leq x \leq 4 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the mean μ of X.
(b) Find the variance of X.
(c) Find the 3rd moment about the mean for X.
(d) Find the standard deviation σ, and find $P(|X-\mu|<2 \sigma)$.
11. Let X be a discrete random variable with the probability distribution given below. Find the variance of X.

x	$f(x)$
-2	$\frac{1}{20}$
-1	$\frac{3}{20}$
0	$\frac{6}{20}$
1	$\frac{2}{20}$
2	$\frac{7}{20}$
3	$\frac{1}{20}$

12. Let X be a discrete random variable with the probability distribution given below. Find the third moment about the mean of X.

x	$f(x)$
-2	$\frac{1}{20}$
-1	$\frac{3}{20}$
0	$\frac{6}{20}$
1	$\frac{2}{20}$
2	$\frac{7}{20}$
3	$\frac{1}{20}$

13. Let X be a continuous random variable with the probability density given below. Compute the variance of X.

$$
f(x)= \begin{cases}\frac{x}{2} & \text { for } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

14. A random variable X has mean $\mu=124$ and standard deviation $\sigma=7.5$. According to Chebyshev's Theorem, what is the minimum probability that X lies between 64 and 184 ?
15. Let X be a discrete random variable with the probability distribution given below. What does Chebyshev's Theorem tell us is the minimum probability that X lies within 1.3 standard deviations of the mean?

x	$f(x)$
-2	$\frac{1}{20}$
-1	$\frac{3}{20}$
0	$\frac{6}{20}$
1	$\frac{2}{20}$
2	$\frac{7}{20}$
3	$\frac{1}{20}$

16. Let X be a continuous random variable with probability density

$$
f(x)= \begin{cases}1 & \text { for } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the moment generating function $M_{X}(t)$ of X.
17. Prove the following properties of moment generating functions:
(a)

$$
M_{X+a}(t)=e^{a t} \cdot M_{X}(t)
$$

(b)

$$
M_{b X}(t)=M_{X}(b t)
$$

(c)

$$
M_{\frac{X+a}{b}}(t)=e^{\frac{a}{b} t} \cdot M_{X}\left(\frac{t}{b}\right)
$$

18. Let X be a continuous random variable with probability density given by

$$
f(x)= \begin{cases}3 e^{-3 x} & \text { for } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the moment generating function for X. (Hint: Express the integrand as $e^{-x(t-3)}$ and restrict $t<3$.)
(b) Use the moment generating function to find the mean and variance of X.
19. Suppose the continuous random variable X has moment generating function given by

$$
M_{X}(t)=2(2-t)^{-1}
$$

for $-2<t<2$. Find the mean and variance of X.
20. Find the moment generating function of the discrete random variable X that has probability distribution

$$
f(x)=2\left(\frac{1}{3}\right)^{x}, \quad \text { for } x \in \mathbb{N}
$$

and use it to find the mean an variance of X. Hint: Use the formula for sum of an infinite geometric series $\sum_{i=0}^{\infty} a r^{i}=\frac{a}{a-r}$
21. Suppose a random variable X has moment generating function

$$
M_{X}(t)=e^{3 t+8 t^{2}}
$$

Find the mean and the variance of X.
22. Let X be a random variable with moment generating function

$$
M_{X}(t)=\frac{1}{1-t^{2}}
$$

Find the mean of X.
23. Let X be a random variable with moment generating function

$$
M_{X}(t)=\frac{1}{1-t^{2}}
$$

Find the variance of X.

