1. Let X be a discrete random variable with the following probability distribution:

$$
\begin{gathered}
P(X=0)=\frac{1}{3}, \quad P(X=1)=P(X=6)=\frac{1}{165} \\
P(X=2)=P(X=5)=\frac{1}{11}, \quad P(X=3)=P(X=4)=\frac{13}{55}
\end{gathered}
$$

Find $E(X)$.
2. Two coins are tossed. The first coin has a probability of 0.6 that it will land on heads, and the second coin has a probability of 0.7 that it will land on heads. Let X be the total number of heads.
(a) What is the range of X ?
(b) Find the probability distribution for X.
(c) Compute $E(X)$.
3. You are playing a dice game where two (regular) dice are rolled and you are paid the amount shown (the sum of the two dice) in dollars. If the game costs $\$ 7$ to play, what can you expect to win or lose; i.e. what is the expected value of this game?
4. You run a business buying and selling coconuts. You have $\$ 1,000$, and coconuts are currently selling for $\$ 2$ each. In one week you can sell the coconuts, but the price will change to either half the price $(\$ 1)$ or double the price ($\$ 4$), with each of these being equally likely.
(a) If your goal is maximize the expected amount of money you have after a week (i.e. after you are able to sell) how many coconuts should you buy at $\$ 2$ each?
(b) If your goal is maximize your expected number of coconuts after a week, how many coconuts should you buy at $\$ 2$ each (vs. buying a week later at the new price)?
5. A game of chance is called fair, if each player's expected value is zero. If the casino pays us $\$ 10$ for rolling a 3 or a 4 with a regular 6 -sided die, what should we have to pay for rolling a $1,2,5$, or 6 , in order to make this a fair game?
6. The probability density of X is given by

$$
f(x)= \begin{cases}\frac{1}{8}(x+1) & \text { for } 2 \leq x \leq 4 \\ 0 & \text { otherwise }\end{cases}
$$

Find the mean μ of X. (Note that $\mu=E(X)$.)
7. Let X be a random variable with the following distribution

$$
\begin{array}{c|cccc}
x & -2 & -1 & 1 & 2 \\
\hline P(X=x) & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}
$$

Let $Y=X^{2}$.
(a) Find the distribution $g(y)$ of Y.
(b) Find the joint distribution $f(x, y)$ of X and Y.
(c) Find the expected value of $2 X+Y$.
(d) Find $E(X), E(Y)$ and $E(X Y)$. Note that this example shows that $E(X Y)=E(X) E(Y)$, however X and Y are not independent.
8. The joint probability density of X and Y is given by

$$
f(x, y)= \begin{cases}\frac{2}{7}(x+2 y) & \text { for } 0 \leq x \leq 1,1<y<2 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the expected value of $g(X, Y)=\frac{X}{Y^{3}}$.
9. The probability density of X is given by

$$
f(x)= \begin{cases}\frac{x}{2} & \text { for } 0<x \leq 1 \\ \frac{1}{2} & \text { for } 1<x \leq 2 \\ \frac{3-x}{2} & \text { for } 2<x<3 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the expected value of $g(X)=X^{2}-5 X+3$.
10. The probability that Ms. Brown will sell a piece of property at a profit of $\$ 3,000$ is $\frac{3}{20}$, the probability that she will sell at a profit of $\$ 1,500$ is $\frac{7}{20}$, the probability that she will break even is $\frac{7}{20}$ and the probability that she will lose $\$ 1,500$ is $\frac{3}{20}$. What is her expected profit?
11. The joint probability density of X and Y is given by

$$
f(x, y)= \begin{cases}\frac{2}{5}(2 x+3 y) & \text { for } 0<x<1,0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Find $E(X Y)$.
12. The number of minutes that a flight from Phoenix to Tucson is early or late is a continuous random variable with probability density

$$
f(x)= \begin{cases}\frac{1}{243}\left(36-x^{2}\right) & \text { for }-6<x<3 \\ 0 & \text { otherwise }\end{cases}
$$

If the posted arrival time is $12: 00 \mathrm{pm}$, find the expected arrival time. (Take negative values to mean early, positive values to mean late)
13. Find the expected value for a random variable X with probability density function given by

$$
f(x)= \begin{cases}x & \text { for } 0<x<1 \\ 2-x & \text { for } 1 \leq x<2 \\ 0 & \text { otherwise }\end{cases}
$$

14. Let X be the number of points rolled with a regular 6 -sided die. Find the expected value of $3 X^{2}+2 X-1$.
15. Let X be a discrete random variable with the probability distribution given below. Find the expected value of X.

x	$f(x)$
-2	$\frac{1}{20}$
-1	$\frac{3}{20}$
0	$\frac{6}{20}$
1	$\frac{2}{20}$
2	$\frac{7}{20}$
3	$\frac{1}{20}$

16. Let X be a discrete random variable with the probability distribution given below. Find $E\left(X^{2}\right)$.

x	$f(x)$
-2	$\frac{1}{20}$
-1	$\frac{3}{20}$
0	$\frac{6}{20}$
1	$\frac{2}{20}$
2	$\frac{7}{20}$
3	$\frac{1}{20}$

17. Let X be a continuous random variable with the probability density given below. Find $E(X)$.

$$
f(x)=\left\{\begin{array}{cl}
\frac{x}{2} & \text { for } 0 \leq x \leq 1 \\
\frac{1}{2} & \text { for } 1<x \leq 2 \\
\frac{3-x}{2} & \text { for } 2<x \leq 3 \\
0 & \text { otherwise }
\end{array}\right.
$$

18. A game of chance is called fair if each player's expected profit is zero. Consider a casino game where the player rolls two fair dice and wins the sum shown on the 2 dice (in dollars). How much should the casino charge the player in order to make this a fair game?
19. A game of chance is called fair if each player's expected profit is zero. Suppose you are making wagers with your friend and you tell them that they have to pay you $\$ 10$ if they roll a 3 or a 4 with fair 6 -sided die. In order to make the game fair, how much should your promise to pay your friend if they roll a 1 , 2,5 , or 6 ?
20. The joint distribution for X and Y is given below. Find $E(X+Y)$.

