MATH1550, Winter 2023:
Exercise Set 7

1. Let X and Y be discrete random variables with joint probability distribution given by the following
table:
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(a) Find the marginal distributions for X and Y.
(b) Find the conditional distribution for X given Y = 1.

Solution. (a) The marginal distribution g(z) for X is given by
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The marginal distribution h(y) for Y is given by
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(b) If we let f(z,y) denote the joint distribution of X and Y, then the conditional distribution for X
given Y =1 is defined as,

fainy =L ;;(ﬁal)l) _ f(()l)
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2. A fair coin is tossed twice. Let X and Y be random variables such that

e X =1 if the first toss is heads, and X = 0 otherwise.
e Y =1 if both tosses are heads, and Y = 0 otherwise

(a) Give the joint probability distribution for X and Y
(b) Find the marginal distributions for X and Y.

(¢) Determine whether or not X and Y are independent.

Solution. (a)
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(b) The marginal distribution g(x) for X is given by

9(0) =0.5+0=0.5,
g(1) = 0.25+0.25 = 0.5,

The marginal distribution h(y) for Y is given by

h(0) = 0.5+ 0.25 = 0.75,
h(1) =0+ 0.25 = 0.25.

(¢) They are not independent, for if f(z,y) is the joint distribution, then for example
£(0,0) = 0.5 £ (0.5)(0.75) = g(0) - h(0).
O

3. Let X and Y be discrete random variables with joint probability distribution given by the following
table:

T
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(a) Find the marginal distributions for X and Y.
(b) Find the conditional distribution for X given ¥ = 2.

(¢) Determine whether or not X and Y are independent.



Solution. (a) The marginal distribution g(z) for X is given by

9(2) = 0.06 4 0.14 = 0.2,
9(3) = 0.1540.35 = 0.5,
g(4) = 0.09 4 0.21 = 0.3.

The marginal distribution h(y) for Y is given by

h(1) = 0.06 + 0.15 + 0.09 = 0.3,
h(2) = 0.14 4 0.35+0.21 = 0.7.

(b) If we let f(z,y) denote the joint distribution of X and Y, then the conditional distribution for X
given Y = 2 is defined as,
f(@,2) _ fz,2)
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(¢) Recall that X and Y are independent if f(x,y) = g(x) - h(y) for all ,y. We need to check six
cases:

£(2,1) = 0.06 = (0.2)(0.3) = g(2)h(1), f(2,2) = 0.14 = (0.2)(0.7) = g(2)h(2),
£(3,1) =0.15 = (0.5)(0.3) = g(3)h(1), f(3,2) = 0.35 = (0.5)(0.7) = g(3)h(2),
F(4,1) = 0.09 = (0.3)(0.3) = g(4)h(1), f(4,2) = 0.21 = (0.3)(0.7) = g(4)h(2).

Thus X and Y are independent.

4. Let X be a random variable with the following distribution
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Let Y = X2,
(a) Find the distribution g(y) of Y.
(b) Find the joint distribution f(z,y) of X and Y.

)
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(¢) Find the marginal distributions of X and Y.
(d) Determine whether or not X and Y are independent.
Solution. (a) Since Y = X2, the range of Y is {1,4}, and
PY=1)=P(X=-1)+P(X=1), P =4)=P(X =-2)+P(X =2).

In summary, the distribution for Y is
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(b) The joint distribution is
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(c) Marginal distribution for X, g(z) = >_, f(,y):
1 1 1 1
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Marginal distribution for Y, h(y) = > f(z,y):
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(d) Note that f(—2,1) =0 % g(—2) - h(1) = &. Therefore X and Y are not independent.

5. The joint density function of X and Y is given by

J x4y for0<z<l,0<y<l1
flz.y) { 0 elsewhere

Find the marginal densities for X and Y, and determine whether X and Y are independent.

Solution. The marginal density for X is
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The marginal density for Y is
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(for example g (%) h (%) = f—‘f’ #* % =f (%, %)) Therefore the random variables are not independent.
O

6. Find the marginal densities of X and Y given their joint probability density
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Solution. The marginal density of X is
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The marginal density of Y is
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7. Let X and Y be jointly continuous random variables with joint probability density given by

Lor—a?—2y) for0<z<1,0<y<]1
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(a) Find the marginal densities for X and Y.

(b) Find the conditional density for X given Y = y and the conditional density for Y given X = z.

)
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(c) Compute the probability P(3 < X < 1Y = 1).
)

(d) Determine whether or not X and Y are independent.

Solution. (a) The marginal density g(z) for X is
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for 0 < z < 1 and 0 elsewhere.



The marginal density h(y) for YV is

for 0 < y < 1 and 0 elsewhere.
(b) The conditional density for X given Y =y when 0 < z < 1,0 < y < 1 is given by,
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and f(z]y) = 0 elsewhere.

The conditional density for Y given X = x when 0 < x < 1,0 < y < 1 is given by,

flylz) = f(x,y) _ 1—52(2x7x27xy) _ 4 — 2z — 2y
g(z) % — 12;”2 3—22

and f(x|y) = 0 elsewhere.
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(d) They are not independent. For example

£(0.25,0.25) = 0.9 # 0.975 = g (0.25) - h(0.25) .



8. Let X and Y be discrete random variables with joint probability distribution given by the following
table:

-3 2 4
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(a) Find the conditional distribution for X given Y = 1.
(b) Are X and Y independent? Justify your answer.

Solution. (a) If we let f(x,y) denote the joint distribution of X and Y, then the conditional distri-
bution for X given Y =1 is defined as,
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(b) No, X and Y are not independent. For example

F(=3,1) = 0.1 # (0.4)(0.5) = g(—3) - h(1)

9. Given the joint probability density
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Find the conditional distribution of X given Y =y and use it to evaluate P(X < 1|y = 1).

Solution. The definition for conditional distribution of X given Y =y is
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where h(y) is the marginal distribution for Y. Then
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So for 0 < 2 < 1 we have
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and f(z|y) = 0 elsewhere. In particular

Thus
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10. The joint probability density function for continuous random variables is given below. Let f(z|y) be
the conditional density for X given Y =y. Find P(0 < X < 1Y =1).
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Solution. The marginal density for Y is

so the conditional density is
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