MATH1550, Winter 2023:
Exercise Set 7

1. Let X and Y be discrete random variables with joint probability distribution given by the following table:

(a) Find the marginal distributions for X and Y.
(b) Find the conditional distribution for X given $Y=1$.

Solution. (a) The marginal distribution $g(x)$ for X is given by

$$
\begin{aligned}
& g(1)=\frac{4}{84}+\frac{12}{84}+\frac{4}{84}=\frac{20}{84} \\
& g(2)=\frac{18}{84}+\frac{24}{84}+\frac{3}{84}=\frac{45}{84} \\
& g(3)=\frac{12}{84}+\frac{6}{84}=\frac{18}{84} \\
& g(4)=\frac{1}{84}
\end{aligned}
$$

The marginal distribution $h(y)$ for Y is given by

$$
\begin{aligned}
& h(0)=\frac{4}{84}+\frac{18}{84}+\frac{12}{84}+\frac{1}{84}=\frac{35}{84} \\
& h(1)=\frac{12}{84}+\frac{24}{84}+\frac{6}{84}=\frac{42}{84} \\
& h(2)=\frac{4}{84}+\frac{3}{84}=\frac{7}{84}
\end{aligned}
$$

(b) If we let $f(x, y)$ denote the joint distribution of X and Y, then the conditional distribution for X given $Y=1$ is defined as,

$$
f(x \mid 1)=\frac{f(x, 1)}{h(1)}=\frac{f(x, 1)}{\left(\frac{42}{84}\right)} .
$$

So we have

$$
\begin{aligned}
& f(1 \mid 1)=\frac{\left(\frac{12}{84}\right)}{\left(\frac{42}{84}\right)}=\frac{12}{42} \\
& f(2 \mid 1)=\frac{\left(\frac{24}{84}\right)}{\left(\frac{42}{84}\right)}=\frac{24}{42} \\
& f(3 \mid 1)=\frac{\left(\frac{6}{84}\right)}{\left(\frac{42}{84}\right)}=\frac{6}{42} \\
& f(4 \mid 1)=\frac{0}{\left(\frac{42}{84}\right)}=0
\end{aligned}
$$

2. A fair coin is tossed twice. Let X and Y be random variables such that

- $X=1$ if the first toss is heads, and $X=0$ otherwise.
- $Y=1$ if both tosses are heads, and $Y=0$ otherwise
(a) Give the joint probability distribution for X and Y
(b) Find the marginal distributions for X and Y.
(c) Determine whether or not X and Y are independent.

Solution. (a)

(b) The marginal distribution $g(x)$ for X is given by

$$
\begin{aligned}
& g(0)=0.5+0=0.5 \\
& g(1)=0.25+0.25=0.5
\end{aligned}
$$

The marginal distribution $h(y)$ for Y is given by

$$
\begin{aligned}
& h(0)=0.5+0.25=0.75 \\
& h(1)=0+0.25=0.25
\end{aligned}
$$

(c) They are not independent, for if $f(x, y)$ is the joint distribution, then for example

$$
f(0,0)=0.5 \neq(0.5)(0.75)=g(0) \cdot h(0)
$$

3. Let X and Y be discrete random variables with joint probability distribution given by the following table:

(a) Find the marginal distributions for X and Y.
(b) Find the conditional distribution for X given $Y=2$.
(c) Determine whether or not X and Y are independent.

Solution. (a) The marginal distribution $g(x)$ for X is given by

$$
\begin{aligned}
& g(2)=0.06+0.14=0.2 \\
& g(3)=0.15+0.35=0.5 \\
& g(4)=0.09+0.21=0.3
\end{aligned}
$$

The marginal distribution $h(y)$ for Y is given by

$$
\begin{aligned}
& h(1)=0.06+0.15+0.09=0.3 \\
& h(2)=0.14+0.35+0.21=0.7
\end{aligned}
$$

(b) If we let $f(x, y)$ denote the joint distribution of X and Y, then the conditional distribution for X given $Y=2$ is defined as,

$$
f(x \mid 2)=\frac{f(x, 2)}{h(2)}=\frac{f(x, 2)}{0.7}
$$

So we have

$$
\begin{aligned}
& f(2 \mid 2)=\frac{0.14}{0.7}=0.2 \\
& f(3 \mid 2)=\frac{0.35}{0.7}=0.5 \\
& f(4 \mid 2)=\frac{0.21}{0.7}=0.3
\end{aligned}
$$

(c) Recall that X and Y are independent if $f(x, y)=g(x) \cdot h(y)$ for all x, y. We need to check six cases:

$$
\begin{array}{ll}
f(2,1)=0.06=(0.2)(0.3)=g(2) h(1), & f(2,2)=0.14=(0.2)(0.7)=g(2) h(2) \\
f(3,1)=0.15=(0.5)(0.3)=g(3) h(1), & f(3,2)=0.35=(0.5)(0.7)=g(3) h(2) \\
f(4,1)=0.09=(0.3)(0.3)=g(4) h(1), & f(4,2)=0.21=(0.3)(0.7)=g(4) h(2)
\end{array}
$$

Thus X and Y are independent.
4. Let X be a random variable with the following distribution

x	-2	-1	1	2
$P(X=x)$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

Let $Y=X^{2}$.
(a) Find the distribution $g(y)$ of Y.
(b) Find the joint distribution $f(x, y)$ of X and Y.
(c) Find the marginal distributions of X and Y.
(d) Determine whether or not X and Y are independent.

Solution. (a) Since $Y=X^{2}$, the range of Y is $\{1,4\}$, and

$$
P(Y=1)=P(X=-1)+P(X=1), \quad P(Y=4)=P(X=-2)+P(X=2)
$$

In summary, the distribution for Y is

y	1	4
$P(Y=y)$	$\frac{1}{2}$	$\frac{1}{2}$

(b) The joint distribution is

(c) Marginal distribution for $X, g(x)=\sum_{y} f(x, y)$:

$$
g(-2)=\frac{1}{4}, \quad g(-1)=\frac{1}{4}, \quad g(1)=\frac{1}{4}, \quad g(2)=\frac{1}{4}
$$

Marginal distribution for $Y, h(y)=\sum_{x} f(x, y)$:

$$
h(1)=\frac{1}{2}, \quad h(4)=\frac{1}{2}
$$

(d) Note that $f(-2,1)=0 \neq g(-2) \cdot h(1)=\frac{1}{8}$. Therefore X and Y are not independent.
5. The joint density function of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cc}
x+y & \text { for } 0<x<1,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find the marginal densities for X and Y, and determine whether X and Y are independent.

Solution. The marginal density for X is

$$
\begin{aligned}
g(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{0}^{1} x+y d y \\
& =x y+\left.\frac{y^{2}}{2}\right|_{0} ^{1} \\
& =x+\frac{1}{2}
\end{aligned}
$$

The marginal density for Y is

$$
\begin{aligned}
h(y) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{1} x+y d x \\
& =\frac{x^{2}}{2}+\left.x y\right|_{0} ^{1} \\
& =\frac{1}{2}+y
\end{aligned}
$$

Then

$$
g(x) h(y)=\left(x+\frac{1}{2}\right)\left(y+\frac{1}{2}\right)=x y+\frac{x}{2}+\frac{y}{2}+\frac{1}{4} \neq x+y=f(x, y)
$$

(for example $g\left(\frac{3}{4}\right) h\left(\frac{3}{4}\right)=\frac{25}{16} \neq \frac{3}{2}=f\left(\frac{3}{4}, \frac{3}{4}\right)$). Therefore the random variables are not independent.
6. Find the marginal densities of X and Y given their joint probability density

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{2}{5}(x+4 y) & \text { for } 0<x<1,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Solution. The marginal density of X is

$$
\begin{aligned}
& g(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{-\infty}^{0} f(x, y) d y+\int_{0}^{1} f(x, y) d y+\int_{1}^{\infty} f(x, y) d y \\
& =\int_{-\infty}^{0} 0 d y+\int_{0}^{1} \frac{2}{5}(x+4 y) d y+\int_{1}^{\infty} 0 d y=\left.\left(\frac{2 x y}{5}+\frac{4 y^{2}}{5}\right)\right|_{0} ^{1}=\frac{2 x}{5}+\frac{4}{5}
\end{aligned}
$$

The marginal density of Y is

$$
\begin{aligned}
& h(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{-\infty}^{0} f(x, y) d x+\int_{0}^{1} f(x, y) d x+\int_{1}^{\infty} f(x, y) d x \\
& =\int_{-\infty}^{0} 0 d x+\int_{0}^{1} \frac{2}{5}(x+4 y) d x+\int_{1}^{\infty} 0 d x=\left.\left(\frac{x^{2}}{5}+\frac{8 x y}{5}\right)\right|_{0} ^{1}=\frac{1}{5}+\frac{8 y}{5}
\end{aligned}
$$

7. Let X and Y be jointly continuous random variables with joint probability density given by

$$
f(x, y)= \begin{cases}\frac{12}{5}\left(2 x-x^{2}-x y\right) & \text { for } 0<x<1,0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the marginal densities for X and Y.
(b) Find the conditional density for X given $Y=y$ and the conditional density for Y given $X=x$.
(c) Compute the probability $P\left(\left.\frac{1}{2}<X<1 \right\rvert\, Y=\frac{1}{4}\right)$.
(d) Determine whether or not X and Y are independent.

Solution. (a) The marginal density $g(x)$ for X is

$$
\begin{aligned}
g(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{0}^{1} \frac{12}{5}\left(2 x-x^{2}-x y\right) d y \\
& =\left.\frac{12}{5}\left(2 x y-x^{2} y-\frac{x y^{2}}{2}\right)\right|_{0} ^{1} \\
& =\frac{12}{5}\left(2 x-x^{2}-\frac{x}{2}\right) \\
& =\frac{18 x}{5}-\frac{12 x^{2}}{5}
\end{aligned}
$$

for $0<x<1$ and 0 elsewhere.

The marginal density $h(y)$ for Y is

$$
\begin{aligned}
h(y) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{1} \frac{12}{5}\left(2 x-x^{2}-x y\right) d x \\
& =\left.\frac{12}{5}\left(x^{2}-\frac{x^{3}}{3}-\frac{x^{2} y}{2}\right)\right|_{0} ^{1} \\
& =\frac{12}{5}\left(1-\frac{1}{3}-\frac{y}{2}\right) \\
& =\frac{8}{5}-\frac{6 y}{5}
\end{aligned}
$$

for $0<y<1$ and 0 elsewhere.
(b) The conditional density for X given $Y=y$ when $0<x<1,0<y<1$ is given by,

$$
f(x \mid y)=\frac{f(x, y)}{h(y)}=\frac{\frac{12}{5}\left(2 x-x^{2}-x y\right)}{\frac{8}{5}-\frac{6 y}{5}}=\frac{12 x-6 x^{2}-6 x y}{4-3 y}
$$

and $f(x \mid y)=0$ elsewhere.

The conditional density for Y given $X=x$ when $0<x<1,0<y<1$ is given by,

$$
f(y \mid x)=\frac{f(x, y)}{g(x)}=\frac{\frac{12}{5}\left(2 x-x^{2}-x y\right)}{\frac{18 x}{5}-\frac{12 x^{2}}{5}}=\frac{4-2 x-2 y}{3-2 x}
$$

and $f(x \mid y)=0$ elsewhere.
(c)

$$
\begin{aligned}
P\left(\left.\frac{1}{2}<X<1 \right\rvert\, Y=\frac{1}{4}\right) & =\int_{\frac{1}{2}}^{1} f\left(x \left\lvert\, \frac{1}{4}\right.\right) d x \\
& =\int_{\frac{1}{2}}^{1} \frac{12 x-6 x^{2}-6 x\left(\frac{1}{4}\right)}{4-3\left(\frac{1}{4}\right)} d x \\
& =\int_{\frac{1}{2}}^{1} \frac{42 x}{13}-\frac{24 x^{2}}{13} d x \\
& =\frac{21 x^{2}}{13}-\left.\frac{8 x^{3}}{13}\right|_{\frac{1}{2}} ^{1} \\
& =\left(\frac{21(1)^{2}}{13}-\frac{8(1)^{3}}{13}\right)-\left(\frac{21\left(\frac{1}{2}\right)^{2}}{13}-\frac{8\left(\frac{1}{2}\right)^{3}}{13}\right) \\
& =\frac{35}{52} \\
& \approx 0.6731
\end{aligned}
$$

(d) They are not independent. For example

$$
f(0.25,0.25)=0.9 \neq 0.975=g(0.25) \cdot h(0.25)
$$

8. Let X and Y be discrete random variables with joint probability distribution given by the following table:

	x		
	-3	2	4
1	0.1	0.2	0.2
$y \quad 3$	0.3	0.1	0.1

(a) Find the conditional distribution for X given $Y=1$.
(b) Are X and Y independent? Justify your answer.

Solution. (a) If we let $f(x, y)$ denote the joint distribution of X and Y, then the conditional distribution for X given $Y=1$ is defined as,

$$
f(x \mid 1)=\frac{f(x, 1)}{h(1)}=\frac{f(x, 1)}{0.5}
$$

So we have

$$
f(-3 \mid 1)=\frac{0.1}{0.5}=0.2, \quad f(2 \mid 1)=\frac{0.2}{0.5}=0.4, \quad f(4 \mid 1)=\frac{0.2}{0.5}=0.4
$$

(b) No, X and Y are not independent. For example

$$
f(-3,1)=0.1 \neq(0.4)(0.5)=g(-3) \cdot h(1)
$$

9. Given the joint probability density

$$
f(x, y)= \begin{cases}\frac{2}{3}(x+2 y) & \text { for } 0<x<1,0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the conditional distribution of X given $Y=y$ and use it to evaluate $P\left(\left.X \leq \frac{1}{2} \right\rvert\, Y=\frac{1}{2}\right)$.

Solution. The definition for conditional distribution of X given $Y=y$ is

$$
f(x \mid y)=\frac{f(x, y)}{h(y)}
$$

where $h(y)$ is the marginal distribution for Y. Then

$$
\begin{aligned}
h(y) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{1} \frac{2}{3}(x+2 y) d x \\
& =\frac{x^{2}}{3}+\left.\frac{4}{3} x y\right|_{0} ^{1} \\
& =\frac{1}{3}(1+4 y)
\end{aligned}
$$

So for $0<x<1$ we have

$$
f(x \mid y)=\frac{\frac{2}{3}(x+2 y)}{\frac{1}{3}(1+4 y)}=\frac{2 x+4 y}{1+4 y}
$$

and $f(x \mid y)=0$ elsewhere. In particular

$$
f\left(x \left\lvert\, \frac{1}{2}\right.\right)=\frac{2 x+4\left(\frac{1}{2}\right)}{1+4\left(\frac{1}{2}\right)}=\frac{2 x+2}{3}
$$

Thus

$$
\begin{aligned}
P\left(\left.X \leq \frac{1}{2} \right\rvert\, Y=\frac{1}{2}\right) & =\int_{0}^{\frac{1}{2}} \frac{2 x+2}{3} d x \\
& =\frac{x^{2}}{3}+\left.\frac{2 x}{3}\right|_{0} ^{\frac{1}{2}} \\
& =\frac{5}{12}
\end{aligned}
$$

10. The joint probability density function for continuous random variables is given below. Let $f(x \mid y)$ be the conditional density for X given $Y=y$. Find $P\left(\left.0 \leq X \leq \frac{1}{2} \right\rvert\, Y=1\right)$.

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) & \text { for } 0<x<1,0<y<2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Solution. The marginal density for Y is

$$
\begin{aligned}
h(y) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{1} \frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) d x \\
& =\left.\frac{6}{7}\left(\frac{x^{3}}{3}+\frac{x^{2} y}{4}\right)\right|_{0} ^{1} \\
& =\frac{6}{7}\left(\frac{1}{3}+\frac{y}{4}\right)
\end{aligned}
$$

so the conditional density is

$$
f(x \mid y)=\frac{f(x, y)}{g(y)}=\frac{\frac{6}{7}\left(x^{2}+\frac{x y}{2}\right)}{\frac{6}{7}\left(\frac{1}{3}+\frac{y}{4}\right)}=\frac{12 x^{2}+6 x y}{4+3 y}
$$

Thus

$$
\begin{aligned}
P\left(\left.0 \leq X \leq \frac{1}{2} \right\rvert\, Y=1\right) & =\int_{0}^{\frac{1}{2}} f(x \mid 1) d x \\
& =\int_{0}^{\frac{1}{2}} \frac{12 x^{2}+6 x}{7} d x \\
& =\frac{4 x^{3}}{7}+\left.\frac{3 x^{2}}{7}\right|_{0} ^{\frac{1}{2}} \\
& =\frac{5}{28}
\end{aligned}
$$

