1. Let X and Y be discrete random variables with joint probability distribution given by the following table:

(a) Find the marginal distributions for X and Y.
(b) Find the conditional distribution for X given $Y=1$.
2. A fair coin is tossed twice. Let X and Y be random variables such that

- $X=1$ if the first toss is heads, and $X=0$ otherwise.
- $Y=1$ if both tosses are heads, and $Y=0$ otherwise
(a) Give the joint probability distribution for X and Y
(b) Find the marginal distributions for X and Y.
(c) Determine whether or not X and Y are independent.

3. Let X and Y be discrete random variables with joint probability distribution given by the following table:

(a) Find the marginal distributions for X and Y.
(b) Find the conditional distribution for X given $Y=2$.
(c) Determine whether or not X and Y are independent.
4. Let X be a random variable with the following distribution

$$
\begin{array}{c|cccc}
x & -2 & -1 & 1 & 2 \\
\hline P(X=x) & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4}
\end{array}
$$

Let $Y=X^{2}$.
(a) Find the distribution $g(y)$ of Y.
(b) Find the joint distribution $f(x, y)$ of X and Y.
(c) Find the marginal distributions of X and Y.
(d) Determine whether or not X and Y are independent.
5. The joint density function of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cc}
x+y & \text { for } 0<x<1,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find the marginal densities for X and Y, and determine whether X and Y are independent.
6. Find the marginal densities of X and Y given their joint probability density

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{2}{5}(x+4 y) & \text { for } 0<x<1,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

7. Let X and Y be jointly continuous random variables with joint probability density given by

$$
f(x, y)= \begin{cases}\frac{12}{5}\left(2 x-x^{2}-x y\right) & \text { for } 0<x<1,0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the marginal densities for X and Y.
(b) Find the conditional density for X given $Y=y$ and the conditional density for Y given $X=x$.
(c) Compute the probability $P\left(\left.\frac{1}{2}<X<1 \right\rvert\, Y=\frac{1}{4}\right)$.
(d) Determine whether or not X and Y are independent.
8. Let X and Y be discrete random variables with joint probability distribution given by the following table:

(a) Find the conditional distribution for X given $Y=1$.
(b) Are X and Y independent? Justify your answer.
9. Given the joint probability density

$$
f(x, y)= \begin{cases}\frac{2}{3}(x+2 y) & \text { for } 0<x<1,0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the conditional distribution of X given $Y=y$ and use it to evaluate $P\left(\left.X \leq \frac{1}{2} \right\rvert\, Y=\frac{1}{2}\right)$.
10. The joint probability density function for continuous random variables is given below. Let $f(x \mid y)$ be the conditional density for X given $Y=y$. Find $P\left(\left.0 \leq X \leq \frac{1}{2} \right\rvert\, Y=1\right)$.

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) & \text { for } 0<x<1,0<y<2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

