MATH1550, Winter 2023:
Exercise Set 6

1. Let $X$ and $Y$ be discrete random variables.


Determine whether this table corresponds to a valid joint probability distribution.

Solution. Note that for all pairs $(x, y)$ where $x \in\{2,3,4\}$ and $y \in\{1,2\}$, the joint probability at $(x, y)$ is non-negative. Next we check to see if probabilities add up to 1 :

$$
0.06+0.15+0.10+0.14+0.35+0.21=1.01 \neq 1
$$

From this we conclude that the given table is not a valid joint probability distribution.
2. Let $X$ and $Y$ be discrete random variables with joint probability distribution given by the following table:

(a) Determine the appropriate value for $k \in \mathbb{R}$ so that is is a valid joint probability distribution.
(b) Find the following probabilities

- $P(X=2, Y=3)$
- $P(X \leq 2, Y=1)$
- $P(X<2, Y=1)$
- $P(X>3, Y \leq 3)$
- $P(X=2)$
- $P(Y \leq 3)$

Solution. (a) For the given table to be a valid joint probability distribution, the values in the table must add up to 1 . Therefore, $k=1-(0.1+0.2+0.3+0.1+0.1)=0.2$.
(b) Since $k=0.2$ by part a), we have the following joint probability distribution:

|  | $x$ |  |  |
| :---: | :---: | :---: | :---: |
|  | -3 | 2 | 4 |
| 1 | 0.1 | 0.2 | 0.2 |
| $y 3$ | 0.3 | 0.1 | 0.1 |

Then,

- $P(X=2, Y=3)=0.1$
- $P(X \leq 2, Y=1)=P(X=-3, Y=1)+P(X=2, Y=1)=0.1+0.2=0.3$
- $P(X<2, Y=1)=P(X=-3, Y=1)=0.1$
- $P(X>3, Y \leq 3)=P(X=4, Y=1)+P(X=4, Y=3)=0.2+0.1=0.3$
- $P(X=2)=P(X=2, Y=1)+P(X=2, Y=3)=0.2+0.1=0.3$
- $P(Y \leq 3)=P(Y=1)+P(Y=3)=(P(X=-3, Y=1)+P(X=2, Y=1)+P(X=$ $4, Y=1))+(P(X=-3, Y=3)=P(X=2, Y=3)+P(X=4, Y=3))=(0.1+0.2+$ $0.2)+(0.3+0.1+0.1)=1$.

3. A fair coin is tossed twice. Let $X$ and $Y$ be random variables such that

- $X=1$ if the first toss is heads, and $X=0$ otherwise.
- $Y=1$ if both tosses are heads, and $Y=0$ otherwise

Give the joint probability distribution for $X$ and $Y$.

4. The joint probability density of continuous random variables $X$ and $Y$ is given by

$$
f(x, y)= \begin{cases}\frac{2}{3}(x+2 y) & \text { for } 0<x<1,0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Verify that this is a valid joint probability density function.
(b) Find the following probabilities

- $P(0 \leq X \leq 1,0.5 \leq Y<1)$
- $P(0.25 \leq X \leq 0.5,0 \leq Y<1)$

Solution. (a) Observe that $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$. So, we only need to check $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y \\
& =\int_{0}^{1} \int_{0}^{1} \frac{2}{3}(x+2 y) d x d y \quad(\text { since } f(x, y) \text { is zero outside of } 0<x<1,0<y<1) \\
& =\left.\int_{0}^{1} \frac{2}{3}\left(\frac{x^{2}}{2}+2 y x\right)\right|_{0} ^{1} d y \\
& =\int_{0}^{1} \frac{2}{3}\left(\frac{1}{2}+2 y\right)-0 d y \\
& =\left.\frac{2}{3}\left(\frac{1}{2} y+y^{2}\right)\right|_{0} ^{1} \\
& =\frac{2}{3}\left[\left(\frac{1}{2}+1\right)-0\right] \\
& =1
\end{aligned}
$$

Hence, the given function is a valid joint probability density function.
(b)

$$
\begin{aligned}
P(0 \leq X \leq 1,0.5 \leq Y<1) & =\int_{0.5}^{1} \int_{0}^{1} \frac{2}{3}(x+2 y) d x d y \\
& =\left.\int_{0.5}^{1} \frac{2}{3}\left(\frac{x^{2}}{2}+2 y x\right)\right|_{0} ^{1} d y \\
& =\int_{0.5}^{1} \frac{2}{3}\left(\frac{1}{2}+2 y\right)-0 d y \\
& =\left.\frac{2}{3}\left(\frac{1}{2} y+y^{2}\right)\right|_{0.5} ^{1} \\
& =\frac{2}{3}\left[\left(\frac{1}{2}+1\right)-\left(\frac{1}{4}+\frac{1}{4}\right)\right] \\
& =\frac{2}{3}
\end{aligned}
$$

$$
\begin{aligned}
P(0.25 \leq X \leq 0.5,0 \leq Y<1) & =\int_{0}^{1} \int_{0.25}^{0.5} \frac{2}{3}(x+2 y) d x d y \\
& =\left.\int_{0}^{1} \frac{2}{3}\left(\frac{x^{2}}{2}+2 y x\right)\right|_{0.25} ^{0.5} d y \\
& =\int_{0}^{1} \frac{2}{3}\left[\left(\frac{1}{8}+y\right)-\left(\frac{1}{32}+\frac{y}{2}\right)\right] d y \\
& =\left.\frac{2}{3}\left[\left(\frac{1}{8} y+\frac{y^{2}}{2}\right)-\left(\frac{1}{32} y+\frac{y^{2}}{4}\right)\right]\right|_{0} ^{1} \\
& =\frac{2}{3}\left[\left(\frac{1}{8}+\frac{1}{2}\right)-\left(\frac{1}{32}+\frac{1}{4}\right)\right]-0 \\
& =\frac{2}{3} \cdot\left(\frac{5}{8}-\frac{9}{32}\right) \\
& =\frac{2}{3} \cdot \frac{11}{32} \\
& =\frac{11}{48}
\end{aligned}
$$

5. Let $X$ and $Y$ be continuous random variables defined on a joint sample space. Consider the function

$$
f(x, y)=\left\{\begin{array}{cl}
2(x+4 y) & \text { for } 0<x<1,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Show that is is not a valid joint probability density of continuous random variables $X$ and $Y$. Find an appropriate constant scaling factor to "salvage" this function.

Solution. Observe that $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$. So, we only need to check $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y \\
& =\int_{0}^{1} \int_{0}^{1} 2(x+4 y) d x d y \quad(\text { since } f(x, y) \text { is zero outside of } 0<x<1,0<y<1) \\
& =\int_{0}^{1} x^{2}+\left.8 y x\right|_{0} ^{1} d y \\
& =\int_{0}^{1}(1+8 y)-0 d y \\
& =y+\left.4 y^{2}\right|_{0} ^{1} \\
& =(1+4)-0 \\
& =5 \neq 1
\end{aligned}
$$

Hence, the given function is not a valid joint probability density function.
Since $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=5$, scaling $f(x, y)$ by the factor $\frac{1}{5}$ (so that the integral equals 1 ) will
salvage the function as a joint probability density. This gives the following joint probability density:

$$
g(x, y)=\left\{\begin{array}{cl}
\frac{2}{5}(x+4 y) & \text { for } 0<x<1,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

6. The joint probability density of continuous random variables $X$ and $Y$ is given by

$$
f(x, y)=\left\{\begin{array}{cc}
x+y & \text { for } 0<x<1,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Determine the joint cumulative distribution function, and find $P\left(X<\frac{1}{2}, Y<1\right)$.

Solution. The joint cumulative distribution function is defined as

$$
F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t
$$

If either $x \leq 0$ or $y \leq 0$ we have $f(x, y)=0$, thus $F(x, y)=0$.
For $0<x, y<1$ we have

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t \\
& =\int_{0}^{y} \int_{0}^{x} s+t d s d t \\
& =\int_{0}^{y} \frac{s^{2}}{2}+\left.s t\right|_{0} ^{x} d t \\
& =\int_{0}^{y} \frac{x^{2}}{2}+x t d t \\
& =\frac{x^{2} t}{2}+\left.\frac{x t^{2}}{2}\right|_{0} ^{y} \\
& =\frac{x^{2} y}{2}+\frac{x y^{2}}{2}
\end{aligned}
$$

For $0<x<1, y \geq 1$ we have

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t \\
& =\int_{0}^{1} \int_{0}^{x} s+t d s d t \\
& =\int_{0}^{1} \frac{s^{2}}{2}+\left.s t\right|_{0} ^{x} d t \\
& =\int_{0}^{1} \frac{x^{2}}{2}+x t d t \\
& =\frac{x^{2} t}{2}+\left.\frac{x t^{2}}{2}\right|_{0} ^{1} \\
& =\frac{x^{2}}{2}+\frac{x}{2}
\end{aligned}
$$

For $0<y<1, x \geq 1$ we have

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t \\
& =\int_{0}^{y} \int_{0}^{1} s+t d s d t \\
& =\int_{0}^{y} \frac{s^{2}}{2}+\left.s t\right|_{0} ^{1} d t \\
& =\int_{0}^{y} \frac{1}{2}+t d t \\
& =\frac{t}{2}+\left.\frac{t^{2}}{2}\right|_{0} ^{y} \\
& =\frac{y^{2}}{2}+\frac{y}{2}
\end{aligned}
$$

For $x \geq 1$ and $y \geq 1$ we have

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t \\
& =\int_{0}^{1} \int_{0}^{1} s+t d s d t \\
& =1
\end{aligned}
$$

In summary

$$
F(x, y)=\left\{\begin{array}{cc}
0 & \text { for } x \leq 0 \text { or } y \leq 0 \\
\frac{x^{2} y}{2}+\frac{x y^{2}}{2} & \text { for } 0<x<1,0<y<1 \\
\frac{x^{2}}{2}+\frac{x}{2} & \text { for } 0<x<1, y \geq 1 \\
\frac{y^{2}}{2}+\frac{y}{2} & \text { for } x \geq 1,0<y<1 \\
1 & \text { for } x \geq 1, y \geq 1
\end{array}\right.
$$

Then

$$
P\left(X<\frac{1}{2}, Y<1\right)=F\left(\frac{1}{2}, 1\right)=\frac{\left(\frac{1}{2}\right)^{2}}{2}+\frac{\left(\frac{1}{2}\right)}{2}=\frac{3}{8} .
$$

7. The joint probability density of continuous random variables $X$ and $Y$ is given by

$$
f(x)= \begin{cases}\frac{2}{55}(x+27) & \text { for } 0 \leq x \leq 1,1<y<2 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Verify that this is a valid joint probability density function.
(b) Find the following probabilities

- $P(0 \leq X \leq 1,1.5 \leq Y<2)$
- $P(0.25 \leq X \leq 0.5,1 \leq Y<2)$
- $P(0.5 \leq X \leq 1,1.25 \leq Y<1.5)$
(c) Find the joint cumulative distribution function.

Solution. (a) Observe that $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$. So, we only need to check $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y \\
& =\int_{1}^{2} \int_{0}^{1} \frac{2}{55}(x+27) d x d y \quad(\text { as } f(x, y)=0 \text { outside of } 0<x<1,1<y<2) \\
& =\left.\int_{1}^{2} \frac{2}{55}\left(\frac{x^{2}}{2}+27 x\right)\right|_{0} ^{1} d y \\
& =\int_{1}^{2} \frac{2}{55}\left(\frac{1}{2}+27\right)-0 d y \\
& =\left.\frac{2}{55}\left(\frac{1}{2} y+27 y\right)\right|_{1} ^{2} \\
& =\frac{2}{55}\left[(1+54)-\left(\frac{1}{2}+27\right)\right] \\
& =1
\end{aligned}
$$

Hence, the given function is a valid joint probability density function.
(b)

$$
\begin{aligned}
P(0 \leq X \leq 1,1.5 \leq Y<2) & =\int_{1.5}^{2} \int_{0}^{1} \frac{2}{55}(x+27) d x d y \\
& =\left.\int_{1.5}^{2} \frac{2}{55}\left(\frac{x^{2}}{2}+27 x\right)\right|_{0} ^{1} d y \\
& =\int_{1.5}^{2} \frac{2}{55}\left(\frac{1}{2}+27\right)-0 d y \\
& =\left.\frac{2}{55}\left(\frac{1}{2} y+27 y\right)\right|_{1.5} ^{2} \\
& =\frac{2}{55}\left[(1+54)-\left(\frac{3}{4}+\frac{81}{2}\right)\right] \\
& =\frac{2}{55} \cdot \frac{55}{4} \\
& =\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
P(0.25 \leq X \leq 0.5,1 \leq Y<2) & =\int_{1}^{2} \int_{0.25}^{0.5} \frac{2}{55}(x+27) d x d y \\
& =\left.\int_{1}^{2} \frac{2}{55}\left(\frac{x^{2}}{2}+27 x\right)\right|_{0.25} ^{0.5} d y \\
& =\int_{1}^{2} \frac{2}{55}\left[\left(\frac{1}{8}+\frac{27}{2}\right)-\left(\frac{1}{32}+\frac{27}{4}\right)\right] d y \\
& =\left.\frac{2}{55}\left(\frac{109}{8} y-\frac{217}{32} y\right)\right|_{1} ^{2} \\
& =\left.\frac{2}{55} \cdot \frac{219}{32} y\right|_{1} ^{2} \\
& =\frac{2}{55} \cdot \frac{219}{32}(2-1) \\
& =\frac{219}{880} \approx 0.25 \\
P(0.5 \leq X \leq 1,1.25 \leq Y<1.5) & =\int_{1.25}^{1.5} \int_{0.5}^{1} \frac{2}{55}(x+27) d x d y \\
& =\left.\int_{1.25}^{1.5} \frac{2}{55}\left(\frac{x^{2}}{2}+27 x\right)\right|_{0.5} ^{1} d y \\
& =\int_{1.25}^{1.5} \frac{2}{55}\left[\left(\frac{1}{2}+27\right)-\left(\frac{1}{8}+\frac{27}{2}\right)\right] d y \\
& =\left.\frac{2}{55} \cdot \frac{111}{8} y\right|_{1.25} ^{1.5} \\
& =\frac{2}{55} \cdot \frac{111}{8} \cdot(1.5-1.25) \\
& =\frac{111}{880} \approx 0.13
\end{aligned}
$$

(c) The joint cumulative distribution function is defined as

$$
F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t
$$

If either $x<0$ or $y \leq 1$ we have $f(x, y)=0$, thus $F(x, y)=0$.
For $0 \leq x \leq 1,1<y<2$ :

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t \\
& =\int_{1}^{y} \int_{0}^{x} \frac{2}{55}(s+27) d s d t \\
& =\left.\int_{1}^{y} \frac{2}{55}\left(\frac{s^{2}}{2}+27 s\right)\right|_{0} ^{x} d t \\
& =\int_{1}^{y} \frac{2}{55}\left(\frac{x^{2}}{2}+27 x\right)-0 d t \\
& =\left.\frac{2}{55}\left(\frac{x^{2}}{2}+27 x\right) t\right|_{1} ^{y} \\
& =\frac{2}{55}\left[\left(\frac{x^{2}}{2}+27 x\right) y-\left(\frac{x^{2}}{2}+27 x\right)\right]
\end{aligned}
$$

For $0 \leq x \leq 1, y \geq 2$ :

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t \\
& =\int_{1}^{2} \int_{0}^{x} \frac{2}{55}(s+27) d s d t \quad(\text { as } y \geq 2 \text { and } f(x, y)=0 \text { outside of } 0<x<1,1<y<2) \\
& =\left.\int_{1}^{2} \frac{2}{55}\left(\frac{s^{2}}{2}+27 s\right)\right|_{0} ^{x} d t \\
& =\int_{1}^{2} \frac{2}{55}\left(\frac{x^{2}}{2}+27 x\right)-0 d t \\
& =\left.\frac{2}{55}\left(\frac{x^{2}}{2}+27 x\right) t\right|_{1} ^{2} \\
& =\frac{2}{55}\left(\frac{x^{2}}{2}+27 x\right)(2-1) \\
& =\frac{2}{55}\left(\frac{x^{2}}{2}+27 x\right)
\end{aligned}
$$

For $1<y<2, x>1$ :

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t \\
& =\int_{1}^{y} \int_{0}^{1} \frac{2}{55}(s+27) d s d t \quad(\text { as } x>1 \text { and } f(x, y)=0 \text { outside of } 0<x<1,1<y<2) \\
& =\left.\int_{1}^{y} \frac{2}{55}\left(\frac{s^{2}}{2}+27 s\right)\right|_{0} ^{1} d t \\
& =\int_{1}^{y} \frac{2}{55}\left(\frac{1}{2}+27\right)-0 d t \\
& =\left.\frac{2}{55} \cdot \frac{55}{2} t\right|_{1} ^{y} \\
& =y-1
\end{aligned}
$$

For $x>1$ and $y \geq 2$ :

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t \\
& =\int_{1}^{2} \int_{0}^{1} \frac{2}{55}(s+27) d s d t \\
& =1
\end{aligned}
$$

In summary

$$
F(x, y)=\left\{\begin{array}{cc}
0 & \text { for } x<0 \text { or } y \leq 1 \\
\frac{2}{55}\left[\left(\frac{x^{2}}{2}+27 x\right) y-\left(\frac{x^{2}}{2}+27 x\right)\right] & \text { for } 0 \leq x \leq 1,1<y<2 \\
\frac{2}{55}\left(\frac{x^{2}}{2}+27 x\right) & \text { for } 0 \leq x \leq 1, y \geq 2 \\
y-1 & \text { for } x>1,1<y<2 \\
1 & \text { for } x>1, y \geq 2
\end{array}\right.
$$

8. The joint probability density of continuous random variables $X$ and $Y$ is given by

$$
f(x, y)= \begin{cases}\frac{2}{5}(2 x+3 y) & \text { for } 0<x<1,0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Verify that this is a valid joint probability density function.
(b) Find the joint cumulative distribution function.
(c) Use part (b) to find

- $P(X \leq 1, Y \leq 0.5)$
- $P(0.25<X \leq 0.5, Y \leq 1)$
- $P(0.25 \leq X \leq 0.5,0.5<Y \leq 1)$

Solution. (a) Observe that $f(x, y) \geq 0$ for all $x, y \in \mathbb{R}$. So, we only need to check $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y \\
& =\int_{0}^{1} \int_{0}^{1} \frac{2}{5}(2 x+3 y) d x d y \quad(\text { as } f(x, y)=0 \text { outside of } 0<x<1,0<y<1) \\
& =\left.\int_{0}^{1} \frac{2}{5}\left(x^{2}+3 y x\right)\right|_{0} ^{1} d y \\
& =\int_{0}^{1} \frac{2}{5}(1+3 y)-0 d y \\
& =\left.\frac{2}{5}\left(y+\frac{3}{2} y^{2}\right)\right|_{0} ^{1} \\
& =\frac{2}{5}\left(1+\frac{3}{2}\right)-0 \\
& =1
\end{aligned}
$$

Hence, the given function is a valid joint probability density function.
(b) The joint cumulative distribution function is defined

$$
F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t
$$

If either $x \leq 0$ or $y \leq 0$ we have $f(x, y)=0$, thus $F(x, y)=0$.
For $0<x, y<1$ :

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t \\
& =\int_{0}^{y} \int_{0}^{x} \frac{2}{5}(2 s+3 t) d s d t \\
& =\left.\int_{0}^{y} \frac{2}{5}\left(s^{2}+3 t s\right)\right|_{0} ^{x} d t \\
& =\int_{0}^{y} \frac{2}{5}\left(x^{2}+3 t x\right)-0 d t \\
& =\left.\frac{2}{5}\left(x^{2} t+\frac{3}{2} t^{2} x\right)\right|_{0} ^{y} \\
& =\frac{2}{5}\left(x^{2} y+\frac{3}{2} y^{2} x\right)
\end{aligned}
$$

For $0<x<1, y \geq 1$ :

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t \\
& =\int_{0}^{1} \int_{0}^{x} \frac{2}{5}(2 s+3 t) d s d t \quad(\text { as } y \geq 1, \text { and } f(x, y)=0 \text { outside of } 0<x<1,0<y<1) \\
& =\left.\int_{0}^{1} \frac{2}{5}\left(s^{2}+3 t s\right)\right|_{0} ^{x} d t \\
& =\int_{0}^{1} \frac{2}{5}\left(x^{2}+3 t x\right)-0 d t \\
& =\left.\frac{2}{5}\left(x^{2} t+\frac{3}{2} t^{2} x\right)\right|_{0} ^{1} \\
& =\frac{2}{5}\left(x^{2}+\frac{3}{2} x\right)-0 \\
& =\frac{2}{5}\left(x^{2}+\frac{3}{2} x\right)
\end{aligned}
$$

For $0<y<1, x \geq 1$ :

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t \\
& =\int_{0}^{y} \int_{0}^{1} \frac{2}{5}(2 s+3 t) d s d t \quad(\text { as } x \geq 1, \text { and } f(x, y)=0 \text { outside of } 0<x<1,0<y<1) \\
& =\left.\int_{0}^{y} \frac{2}{5}\left(s^{2}+3 t s\right)\right|_{0} ^{1} d t \\
& =\int_{0}^{y} \frac{2}{5}(1+3 t)-0 d t \\
& =\left.\frac{2}{5}\left(t+\frac{3}{2} t^{2}\right)\right|_{0} ^{y} \\
& =\frac{2}{5}\left(y+\frac{3}{2} y^{2}\right)-0 \\
& =\frac{2}{5}\left(y+\frac{3}{2} y^{2}\right)
\end{aligned}
$$

For $x \geq 1$ and $y \geq 1$ we have

$$
\begin{aligned}
F(x, y) & =\int_{-\infty}^{y} \int_{-\infty}^{x} f(s, t) d s d t \\
& =\int_{0}^{1} \int_{0}^{1} \frac{2}{5}(2 s+3 t) d s d t \\
& =1
\end{aligned}
$$

In summary

$$
F(x, y)=\left\{\begin{array}{cc}
0 & \text { for } x \leq 0 \text { or } y \leq 0 \\
\frac{2}{5}\left(x^{2} y+\frac{3}{2} y^{2} x\right) & \text { for } 0<x<1,0<y<1 \\
\frac{2}{5}\left(x^{2}+\frac{3}{2} x\right) & \text { for } 0<x<1, y \geq 1 \\
\frac{2}{5}\left(y+\frac{3}{2} y^{2}\right) & \text { for } x \geq 1,0<y<1 \\
1 & \text { for } x \geq 1, y \geq 1
\end{array}\right.
$$

(c) Using the joint cumulative distribution function,

$$
P(X \leq 1, Y \leq 0.5)=F(1,0.5)
$$

This falls into the fourth part of $F(x, y)$ that we have found in (b). So,

$$
P(X \leq 1, Y \leq 0.5)=F(1,0.5)=\frac{2}{5}\left(0.5+\frac{3}{2}(0.5)^{2}\right)=\frac{14}{40}=\frac{7}{20}=0.35
$$

Next we have

$$
\begin{aligned}
P(0.25<X \leq 0.5, Y \leq 1) & =P(X \leq 0.5, Y \leq 1)-P(X \leq 0.25, Y \leq 1) \\
& =F(0.5,1)-F(0.25,1)
\end{aligned}
$$

Both terms in the expression on the right can be found from the third part of $F(x, y)$. So,

$$
\begin{aligned}
P(0.25<X \leq 0.5, Y \leq 1) & =F(0.5,1)-F(0.25,1) \\
& =\frac{2}{5}\left((0.5)^{2}+\frac{3}{2} \cdot 0.5\right)-\frac{2}{5}\left((0.25)^{2}+\frac{3}{2} \cdot 0.25\right) \\
& =0.225
\end{aligned}
$$

Finally,

$$
P(0.25 \leq X \leq 0.5,0.5<Y \leq 1)=P(0.25 \leq X \leq 0.5, Y \leq 1)-P(0.25<X \leq 0.5, Y \leq 0.5)
$$

We have already found $P(0.25<X \leq 0.5, Y \leq 1)=0.225$, so it remains to find

$$
\begin{aligned}
P(0.25<X \leq 0.5, Y \leq 0.5) & =P(X \leq 0.5, Y \leq 0.5)-P(X \leq 0.25, Y \leq 0.5) \\
& =F(0.5,0.5)-F(0.25,0.5)
\end{aligned}
$$

Both terms in the expression on the right can be found from the second part of $F(x, y)$. So,

$$
\begin{aligned}
& P(0.25<X \leq 0.5, Y \leq 0.5) \\
& =P(X \leq 0.5, Y \leq 0.5)-P(X \leq 0.25, Y \leq 0.5) \\
& =F(0.5,0.5)-F(0.25,0.5) \\
& =\frac{2}{5}\left((0.5)^{2} \cdot(0.5)+\frac{3}{2}(0.5)^{2} \cdot(0.5)\right)-\frac{2}{5}\left((0.25)^{2} \cdot(0.5)+\frac{3}{2}(0.5)^{2} \cdot 0.25\right) \\
& =\frac{1}{8}-\frac{1}{20} \\
& =0.075
\end{aligned}
$$

Thus

$$
\begin{aligned}
& P(0.25 \leq X \leq 0.5,0.5<Y \leq 1) \\
& =P(0.25 \leq X \leq 0.5, Y \leq 1)-P(0.25<X \leq 0.5, Y \leq 0.5) \\
& =0.225-0.075 \\
& =0.15
\end{aligned}
$$

9. Let $X$ and $Y$ be discrete random variables with joint probability distribution given by the following table:


Find the marginal distributions for $X$ and $Y$.
Solution. The marginal distribution $g(x)$ for $X$ is given by

$$
\begin{aligned}
& g(-3)=0.1+0.3=0.4, \\
& g(2)=0.2+0.1=0.3, \\
& g(4)=0.2+0.1=0.3 \text {. }
\end{aligned}
$$

The marginal distribution $h(y)$ for $Y$ is given by

$$
\begin{aligned}
& h(1)=0.1+0.2+0.2=0.5 \\
& h(3)=0.3+0.1+0.1=0.5
\end{aligned}
$$

10. The joint distribution function, $f(x, y)$, for discrete random variables $X$ and $Y$ is given below. Find $F(3,3)$ where $F(x, y)$ is the cumulative distribution function for $X$ and $Y$.

|  | $x$ |  |
| :---: | :---: | :---: |
|  | 1 | 2 |
| -2 | 0.1 | 0.2 |
| -1 | 0.2 | 0.1 |
| $y 4$ | 0 | 0.1 |
| 5 | 0.3 | 0 |

Solution.

$$
\begin{aligned}
F(3,3) & =P(X \leq 3, Y \leq 3) \\
& =f(1,-2)+f(-1,-1)+f(2,-1)+f(2,-1) \\
& =0.1+0.2+0.2+0.1 \\
& =0.6
\end{aligned}
$$

11. A fair coin is tossed 4 times. Let random variable $X$ be the number of heads appearing in the 4 tosses and $Y$ be the largest number of consecutive heads in the 4 tosses. If $f(x, y)$ is the joint probability distribution for $X$ and $Y$, find $f(3,2)$. (For practice find the entire joint distribution.)

Solution. The joint distribution $f(x, y)$ is summarized in the table below.


To find $f(3,2)$ for example:

$$
f(3,2)=P(X=3, Y=2)=P(\{H H T H, H T H H\})=\frac{2}{16} .
$$

12. The joint probability density function for continuous random variables is given below. Find $P(0 \leq$ $X \leq \frac{1}{2}, \frac{1}{2} \leq Y \leq 1$ ).

$$
f(x, y)=\left\{\begin{array}{cl}
12 x y(1-x) & \text { for } 0<x<1,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Solution.

$$
\begin{aligned}
P\left(0 \leq X \leq \frac{1}{2}, \frac{1}{2} \leq Y \leq 1\right) & =\int_{\frac{1}{2}}^{1} \int_{0}^{\frac{1}{2}} 12 x y(1-x) d x d y \\
& =12 \int_{\frac{1}{2}}^{1} \int_{0}^{\frac{1}{2}} x y-x^{2} y d x d y \\
& =12 \int_{\frac{1}{2}}^{1}\left[\frac{x^{2} y}{2}-\frac{x^{3} y}{3}\right]_{0}^{\frac{1}{2}} d y \\
& =12 \int_{\frac{1}{2}}^{1} \frac{y}{12} d y \\
& =\left.\frac{y^{2}}{2}\right|_{\frac{1}{2}} ^{1} \\
& =\left(\frac{1}{2}-\frac{1}{8}\right) \\
& =\frac{3}{8}
\end{aligned}
$$

13. Is the following function a valid joint density function?

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x+y}{2} & \text { for } 0<x<1,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Solution. No, since

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x, y) d x d y & =\int_{0}^{1} \int_{0}^{1} \frac{x+y}{2} d x d y \\
& =\int_{0}^{1}\left[\frac{x^{2}}{4}+\frac{x y}{2}\right]_{0}^{1} d y \\
& =\int_{0}^{1} \frac{1}{4}+\frac{y}{2} d y \\
& =\frac{y}{4}+\left.\frac{y^{2}}{4}\right|_{0} ^{1} \\
& =\frac{1}{2} \\
& \neq 1
\end{aligned}
$$

14. The joint distribution, $f(x, y)$, for discrete random variables $X$ and $Y$ is given below. Let $g(x)$ be the marginal distribution for $X$. Find $g(4)$.

Solution.

$$
g(4)=\sum_{y=2}^{12} f(4, y)=\frac{2}{36}+\frac{2}{36}+\frac{2}{36}+\frac{1}{36}=\frac{7}{36}
$$

15. The joint probability density function for continuous random variables is given below. Find $g(x)$, the marginal density for $X$.

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) & \text { for } 0<x<1,0<y<2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Solution.

$$
\begin{aligned}
g(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{0}^{2} \frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) d y \\
& =\left.\frac{6}{7}\left(x^{2} y+\frac{x y^{2}}{4}\right)\right|_{0} ^{2} \\
& =\frac{6}{7}\left(2 x^{2}+x\right)
\end{aligned}
$$

