MATH1550, Winter 2023:
Exercise Set 6

1. Let X and Y be discrete random variables.

Determine whether this table corresponds to a valid joint probability distribution.
2. Let X and Y be discrete random variables with joint probability distribution given by the following table:

(a) Determine the appropriate value for $k \in \mathbb{R}$ so that is is a valid joint probability distribution.
(b) Find the following probabilities

- $P(X=2, Y=3)$
- $P(X \leq 2, Y=1)$
- $P(X<2, Y=1)$
- $P(X>3, Y \leq 3)$
- $P(X=2)$
- $P(Y \leq 3)$

3. A fair coin is tossed twice. Let X and Y be random variables such that

- $X=1$ if the first toss is heads, and $X=0$ otherwise.
- $Y=1$ if both tosses are heads, and $Y=0$ otherwise

Give the joint probability distribution for X and Y.
4. The joint probability density of continuous random variables X and Y is given by

$$
f(x, y)= \begin{cases}\frac{2}{3}(x+2 y) & \text { for } 0<x<1,0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Verify that this is a valid joint probability density function.
(b) Find the following probabilities

- $P(0 \leq X \leq 1,0.5 \leq Y<1)$
- $P(0.25 \leq X \leq 0.5,0 \leq Y<1)$

5. Let X and Y be continuous random variables defined on a joint sample space. Consider the function

$$
f(x, y)=\left\{\begin{array}{cl}
2(x+4 y) & \text { for } 0<x<1,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Show that is is not a valid joint probability density of continuous random variables X and Y. Find an appropriate constant scaling factor to "salvage" this function.
6. The joint probability density of continuous random variables X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cc}
x+y & \text { for } 0<x<1,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Determine the joint cumulative distribution function, and find $P\left(X<\frac{1}{2}, Y<1\right)$.
7. The joint probability density of continuous random variables X and Y is given by

$$
f(x)= \begin{cases}\frac{2}{55}(x+27) & \text { for } 0 \leq x \leq 1,1<y<2 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Verify that this is a valid joint probability density function.
(b) Find the following probabilities

- $P(0 \leq X \leq 1,1.5 \leq Y<2)$
- $P(0.25 \leq X \leq 0.5,1 \leq Y<2)$
- $P(0.5 \leq X \leq 1,1.25 \leq Y<1.5)$
(c) Find the joint cumulative distribution function.

8. The joint probability density of continuous random variables X and Y is given by

$$
f(x, y)= \begin{cases}\frac{2}{5}(2 x+3 y) & \text { for } 0<x<1,0<y<1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Verify that this is a valid joint probability density function.
(b) Find the joint cumulative distribution function.
(c) Use part (b) to find

- $P(X \leq 1, Y \leq 0.5)$
- $P(0.25<X \leq 0.5, Y \leq 1)$
- $P(0.25 \leq X \leq 0.5,0.5<Y \leq 1)$

9. Let X and Y be discrete random variables with joint probability distribution given by the following table:

Find the marginal distributions for X and Y.
10. The joint distribution function, $f(x, y)$, for discrete random variables X and Y is given below. Find $F(3,3)$ where $F(x, y)$ is the cumulative distribution function for X and Y.

11. A fair coin is tossed 4 times. Let random variable X be the number of heads appearing in the 4 tosses and Y be the largest number of consecutive heads in the 4 tosses. If $f(x, y)$ is the joint probability distribution for X and Y, find $f(3,2)$. (For practice find the entire joint distribution.)
12. The joint probability density function for continuous random variables is given below. Find $P(0 \leq$ $\left.X \leq \frac{1}{2}, \frac{1}{2} \leq Y \leq 1\right)$.

$$
f(x, y)=\left\{\begin{array}{cl}
12 x y(1-x) & \text { for } 0<x<1,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

13. Is the following function a valid joint density function?

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x+y}{2} & \text { for } 0<x<1,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

14. The joint distribution, $f(x, y)$, for discrete random variables X and Y is given below. Let $g(x)$ be the marginal distribution for X. Find $g(4)$.

15. The joint probability density function for continuous random variables is given below. Find $g(x)$, the marginal density for X.

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) & \text { for } 0<x<1,0<y<2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

