1. Let X be a continuous random variable with probability density function

$$
f(x)= \begin{cases}\frac{1}{10}\left(3 x^{2}+1\right) & \text { for } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Verify that $f(x)$ is a valid probability density function
(b) Find $P(X \geq 1)$

Solution. (a) A density function must satisfy:

- $f(x) \geq 0$ for all $x \in \mathbb{R}$.
- $\int_{-\infty}^{\infty} f(x) d x=1$.

We see that the first condition is satisfied, we need only to verify the second.

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{0}^{2} \frac{1}{10}\left(3 x^{2}+1\right) d x \\
& =\frac{1}{10}\left[x^{3}+x\right]_{0}^{2} \\
& =\frac{1}{10}[10] \\
& =1
\end{aligned}
$$

(b)

$$
P(X \geq 1)=\int_{1}^{2} \frac{1}{10}\left(3 x^{2}+1\right) d x=\left.\frac{1}{10}\left(x^{3}+x\right)\right|_{1} ^{2}=\frac{8}{10}=0.8
$$

2. Let Y be a continuous random variable. Let $f(x)=k(1+x)$ for $x \in[0,2]$ and $f(x)=0$ elsewhere. For which values of k is f a valid probability density function for Y ?

Solution. A density function must satisfy $f(x) \geq 0$ for all $x \in \mathbb{R}$, and $\int_{-\infty}^{\infty} f(x) d x=1$. The first condition forces k to be non-negative. For the second condition we compute

$$
\begin{aligned}
\int_{-\infty}^{\infty} f(x) d x & =\int_{-\infty}^{0} f(x) d x+\int_{0}^{2} f(x) d x+\int_{2}^{\infty} f(x) d x \\
& =\int_{-\infty}^{0} 0 d x+\int_{0}^{2} k(1+x) d x+\int_{2}^{\infty} 0 d x \\
& =k \int_{0}^{2} 1+x d x \\
& =k \cdot\left[x+\frac{x^{2}}{2}\right]_{0}^{2} \\
& =k \cdot\left[\left(2+\frac{4}{2}\right)-\left(0+\frac{0}{2}\right)\right] \\
& =4 k
\end{aligned}
$$

In order for f to be a probability density function we must have $4 k=1$. Thus, $k=\frac{1}{4}$.
3. Which of the following are allowable as probability density functions for some continuous random variable? (show why or why not)
(a)

$$
f(x)=\left\{\begin{array}{cl}
4 x^{3} & \text { for } 0 \leq x \leq 1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(b)

$$
g(x)=\left\{\begin{array}{cl}
6 x^{2}-2 x & \text { for } 0 \leq x \leq 1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(c)

$$
h(x)=\left\{\begin{array}{cl}
\frac{1}{6}(1+x)^{5} & \text { for } 0 \leq x \leq 1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(d)

$$
p(x)=\left\{\begin{array}{cl}
\frac{3}{4}\left(1-x^{2}\right) & \text { for }-1<x<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Solution. (a) Yes; $f(x) \geq 0$ for all x and

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{1} 4 x^{3} d x=\left.x^{4}\right|_{0} ^{1}=1 .
$$

(b) No; for example $g\left(\frac{1}{6}\right)=-\frac{1}{6}<0$.
(c) No;

$$
\int_{-\infty}^{\infty} h(x) d x=\int_{0}^{1} \frac{1}{6}(1+x)^{5} d x=\left.\frac{(1+x)^{6}}{36}\right|_{0} ^{1}=\frac{63}{36} \neq 1 .
$$

(d) Yes; $p(x) \geq 0$ for all x (since $x^{2}<1$ for $-1<x<1$, we have $1-x^{2}>0$), and

$$
\int_{-\infty}^{\infty} p(x) d x=\int_{-1}^{1} \frac{3}{4}\left(1-x^{2}\right) d x=\frac{3}{4} x-\left.\frac{1}{4} x^{3}\right|_{-1} ^{1}=1 .
$$

4. Find the cumulative distribution function $F(x)$ for the random variable X in question 1 , and use $F(x)$ to compute $P(-1 \leq X \leq 1)$ and $P(0.5 \leq X \leq 1.5)$.

Solution. The cumulative distribution function is defined

$$
F(x)=\int_{-\infty}^{x} f(t) d t .
$$

Based on the piecewise definition of $f(x)$ we consider three regions: $x<0,0 \leq x \leq 2$ and $x>2$. For $x<0$

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{x} 0 d t=0 .
$$

For $0 \leq x \leq 2$

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{0} 0 d t+\int_{0}^{x} \frac{1}{10}\left(3 t^{2}+1\right) d t=\frac{1}{10}\left[t^{3}+t\right]_{0}^{x}=\frac{1}{10}\left(x^{3}+x\right) .
$$

For $x>2$

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{0} 0 d t+\int_{0}^{2} \frac{1}{10}\left(3 t^{2}+1\right) d t+\int_{2}^{x} 0 d t=0+\frac{1}{10}\left[t^{3}+t\right]_{0}^{2}+0=1
$$

In summary

$$
F(x)=\left\{\begin{array}{cc}
0 & \text { for } x<0 \\
\frac{1}{10}\left(x^{3}+x\right) & \text { for } 0 \leq x \leq 2 \\
1 & \text { for } x>2
\end{array}\right.
$$

Now

$$
\begin{aligned}
P(-1 \leq X \leq 1) & =F(1)-F(-1) \\
& =\frac{1}{10}\left(1^{3}+1\right)-0 \\
& =\frac{1}{5}
\end{aligned}
$$

and

$$
\begin{aligned}
P(0.5 \leq X \leq 1.5) & =F(1.5)-F(0.5) \\
& =\frac{1}{10}\left((1.5)^{3}+1.5\right)-\frac{1}{10}\left((0.5)^{3}+0.5\right) \\
& =\frac{39}{80}-\frac{5}{80} \\
& =\frac{17}{40}
\end{aligned}
$$

5. Find a probability density function for the random variable whose cumulative distribution function is given by

$$
F(x)=\left\{\begin{array}{cc}
0 & \text { for } x \leq 0 \\
x & \text { for } 0<x<1 \\
1 & \text { for } x \geq 1
\end{array}\right.
$$

Solution. Using the fact that $f(x)=\frac{d}{d x} F(x)$ we have

$$
f(x)=\left\{\begin{array}{lc}
0 & \text { for } x \leq 0 \\
1 & \text { for } 0<x<1 \\
0 & \text { for } x \geq 1
\end{array}\right.
$$

6. The probability density function of a random variable X is given by

$$
f(x)=\left\{\begin{array}{cc}
\frac{c}{\sqrt{x}} & \text { for } 0<x<4 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find the value of c, and compute $P\left(X<\frac{1}{4}\right)$ and $P(X>1)$.

Solution. A density function must satisfy:

- $f(x) \geq 0$ for all $x \in \mathbb{R}$.
- $\int_{-\infty}^{\infty} f(x) d x=1$.

The first condition forces the value of c to be non-negative. Applying the second condition:

$$
\begin{aligned}
1 & =\int_{-\infty}^{\infty} f(x) d x \\
& =\int_{0}^{4} \frac{c}{\sqrt{x}} d x \\
& =c[2 \sqrt{x}]_{0}^{4} \\
& =4 c
\end{aligned}
$$

This forces $c=\frac{1}{4}$. Thus

$$
\begin{aligned}
P\left(X<\frac{1}{4}\right) & =\int_{-\infty}^{\frac{1}{4}} f(x) d x \\
& =\int_{0}^{\frac{1}{4}} \frac{1}{4 \sqrt{x}} d x \\
& =\frac{1}{4}[2 \sqrt{x}]_{0}^{\frac{1}{4}} \\
& =\frac{1}{4}
\end{aligned}
$$

and

$$
\begin{aligned}
P(X>1) & =\int_{1}^{\infty} f(x) d x \\
& =\int_{1}^{4} \frac{1}{4 \sqrt{x}} d x \\
& =\frac{1}{4}[2 \sqrt{x}]_{1}^{4} \\
& =\frac{1}{2}
\end{aligned}
$$

7. Suppose discrete random variable X has range $\{0,1,2\}$ with probability distribution

$$
f(x)=\frac{\binom{2}{x}\binom{4}{3-x}}{\binom{6}{3}}
$$

(a) Verify that this is a valid probability distribution.
(b) Create a histogram for this probability distribution.
(c) Give the cumulative probability distribution for X.
(d) Come up with an example of a probability experiment which corresponds to this X.

Solution. (a) We can see that $f(x) \geq 0$ for all $x \in\{0,1,2\}$ since the expression for $f(x)$ involves only binomial coefficients, which are always positive. Next we note that

$$
\sum_{x} f(x)=f(0)+f(1)+f(2)=\frac{\binom{2}{0}\binom{4}{3}}{\binom{6}{3}}+\frac{\binom{2}{1}\binom{4}{2}}{\binom{6}{3}}+\frac{\binom{2}{2}\binom{4}{1}}{\binom{6}{3}}=\frac{4}{20}+\frac{12}{20}+\frac{4}{20}=1
$$

(b)

(c)

$$
F(x)= \begin{cases}0 & \text { for } x<0 \\ \frac{1}{5} & \text { for } 0 \leq x<1 \\ \frac{4}{5} & \text { for } 1 \leq x<2 \\ 1 & \text { for } x \geq 2\end{cases}
$$

(d) Consider the experiment of drawing 3 balls without replacement from a bag containing 2 gold balls and 4 silver balls. Let X be the random variable whose value is the number of gold balls drawn.
8. Suppose the probability density of continuous random variable X is given by

$$
f(x)=\left\{\begin{array}{cl}
4 x^{3} & \text { for } 0 \leq x \leq 1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find the cumulative distribution function $F(x)$ for X, and use it to compute $P(0.5<X<1)$.

Solution.

$$
F(x)= \begin{cases}0 & \text { for } x<0 \\ x^{4} & \text { for } 0 \leq x \leq 1 \\ 1 & \text { for } x>1\end{cases}
$$

Recall that for a continuous random variable $P(0.5<X<1)=P(0.5<X \leq 1)$. Thus

$$
\begin{aligned}
P(0.5<X<1) & =P(0.5<X \leq 1) \\
& =F(1)-F(0.5) \\
& =1-(0.5)^{4} \\
& =0.9375
\end{aligned}
$$

9. Suppose the probability density of continuous random variable X is given by

$$
f(x)= \begin{cases}\frac{x}{2} & \text { for } 0<x \leq 1 \\ \frac{1}{2} & \text { for } 1<x \leq 2 \\ \frac{3-x}{2} & \text { for } 2<x<3 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Find the cumulative distribution function $F(x)$ for X.
(b) Use the cumulative distribution to compute the following probabilities

- $P(0.25<x<0.5)$
- $P(0.5<x<1.5)$
- $P(0.5<x<2.25)$

Solution. (a) Recall that the cumulative distribution function $F(x)$, for a continuous random variable X, is defined by

$$
F(x)=\int_{-\infty}^{x} f(t) d t
$$

for any $x \in \mathbb{R}$, where $f(x)$ is the density function for X. Since $f(x)$ is defined piecewise we solve for $F(x)$ in pieces as well. For $x \leq 0$:

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{x} 0 d t=0
$$

For $x \in(0,1]$:

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(t) d t \\
& =\int_{-\infty}^{0} f(t) d t+\int_{0}^{x} f(t) d t \\
& =F(0)+\int_{0}^{x} \frac{t}{2} d t \\
& =0+\left.\frac{t^{2}}{4}\right|_{0} ^{x} \\
& =\frac{x^{2}}{4}
\end{aligned}
$$

For $x \in(1,2]$:

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(t) d t \\
& =\int_{-\infty}^{1} f(t) d t+\int_{1}^{x} f(t) d t \\
& =F(1)+\int_{1}^{x} \frac{1}{2} d t \\
& =\frac{(1)^{2}}{4}+\left[\frac{t}{2}\right]_{1}^{x} \\
& =\frac{1}{4}+\left[\frac{x}{2}-\frac{1}{2}\right] \\
& =\frac{x}{2}-\frac{1}{4}
\end{aligned}
$$

For $x \in(2,3)$:

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(t) d t \\
& =\int_{-\infty}^{2} f(t) d t+\int_{2}^{x} f(t) d t \\
& =F(2)+\int_{1}^{x} \frac{3-t}{2} d t \\
& =\frac{(2)}{2}-\frac{1}{4}+\left[\frac{3 t}{2}-\frac{t^{2}}{4}\right]_{2}^{x} \\
& =\frac{3}{4}+\left[\left(\frac{3 x}{2}-\frac{x^{2}}{4}\right)-(3-1)\right] \\
& =\frac{3 x}{2}-\frac{x^{2}}{4}-\frac{5}{4}
\end{aligned}
$$

For $x \geq 3$ we have $F(x)=1$, since we will have integrated over all nonzero pieces of the density function. Verify this directly or see that,

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(t) d t \\
& =\int_{-\infty}^{3} f(t) d t+\int_{3}^{x} f(t) d t \\
& =\int_{-\infty}^{3} f(t) d t+0 \quad(\text { as } f(t)=0 \text { for } x \geq 3) \\
& =\int_{-\infty}^{3} f(t) d t+\int_{3}^{\infty} f(t) d t \\
& =\int_{-\infty}^{\infty} f(t) d t \\
& =1
\end{aligned}
$$

Putting these pieces together we have

$$
F(x)= \begin{cases}0 & \text { for } x<0 \\ \frac{x^{2}}{4} & \text { for } 0 \leq x<1 \\ \frac{x}{2}-\frac{1}{4} & \text { for } 1 \leq x<2 \\ \frac{3 x}{2}-\frac{x^{2}}{4}-\frac{5}{4} & \text { for } 2 \leq x<3 \\ 1 & \text { for } x \geq 3\end{cases}
$$

(b) •

$$
\begin{aligned}
P(0.25<x<0.5) & =F(0.5)-F(0.25) \\
& =\frac{(0.5)^{2}}{4}-\frac{(0.25)^{2}}{4} \\
& =\frac{3}{64} \\
& =0.046875
\end{aligned}
$$

$$
\begin{aligned}
P(0.5<x<1.5) & =F(1.5)-F(0.5) \\
& =\frac{1.5}{2}-\frac{1}{4}-\frac{(0.5)^{2}}{4} \\
& =\frac{7}{16} \\
& =0.4375
\end{aligned}
$$

-

$$
\begin{aligned}
P(0.5<x<2.25) & =F(2.25)-F(0.5) \\
& =\frac{6.75}{2}-\frac{(2.25)^{2}}{4}-\frac{5}{4}-\frac{(0.5)^{2}}{4} \\
& =\frac{51}{64} \\
& =0.796875
\end{aligned}
$$

10. The continuous random variable X has cumulative distribution function given by

$$
F(x)=\left\{\begin{array}{cl}
0 & \text { for } x \leq-1 \\
\frac{x+1}{2} & \text { for }-1 \leq x<1 \\
1 & \text { for } x \geq 1
\end{array}\right.
$$

(a) Compute the following probabilities

- $P\left(-\frac{1}{2}<X<\frac{1}{2}\right)$
- $P(2<X<3)$
(b) Determine the probability density function for X.

Solution. (a) •

$$
\begin{aligned}
P\left(-\frac{1}{2}<X<\frac{1}{2}\right) & =F(0.5)-F(-0.5) \\
& =\frac{1.5}{2}-\frac{0.5}{2} \\
& =\frac{1}{2}
\end{aligned}
$$

-

$$
\begin{aligned}
P(2<X<3) & =F(3)-F(2) \\
& =1-1 \\
& =0
\end{aligned}
$$

(b)

$$
f(x)= \begin{cases}\frac{1}{2} & \text { for }-1 \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}
$$

11. Find the probability density function for continuous random variable Y with cumulative distribution function given by

$$
F(y)=\left\{\begin{array}{cl}
0 & \text { for } y \leq 0 \\
\frac{1}{4} y^{2} & \text { for } 0 \leq y \leq 2 \\
1 & \text { for } y>2
\end{array}\right.
$$

Solution. To find the probability density function we take the derivative of the cumulative distribution function. We do this separately on each interval that is it defined. So

$$
f(y)= \begin{cases}0 & \text { for } y \leq 0 \\ \frac{y}{2} & \text { for } 0 \leq y \leq 2 \\ 0 & \text { for } y>2\end{cases}
$$

12. Can the following function serve as a valid probability density for a continuous random variable?

$$
f(x)=\left\{\begin{array}{cl}
\frac{2}{3}(x+1) & \text { for } x \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

Solution. Yes, since $f(x) \geq 0$ for all x and

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{1} \frac{2}{3}(x+1) d x=\frac{x^{2}}{3}+\left.\frac{2 x}{3}\right|_{0} ^{1}=\frac{1}{3}+\frac{2}{3}=1
$$

13. Can the following function serve as a valid probability density for a continuous random variable?

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{4}(x+1) & \text { for } x \in[2,4] \\
0 & \text { otherwise }
\end{array}\right.
$$

Solution. No, note that

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{2}^{4} \frac{1}{4}(x+1) d x=\frac{x^{2}}{8}+\left.\frac{x}{4}\right|_{2} ^{4}=(2+1)-\left(\frac{1}{2}+\frac{1}{2}\right)=2
$$

14. Let X be a continuous random variable with probability density function given by

$$
f(x)=\left\{\begin{array}{cl}
\frac{x+1}{8} & \text { for } x \in(2,4) \\
0 & \text { otherwise }
\end{array}\right.
$$

Find $P(1.5<X<3)$.

Solution.

$$
P(1.5<X<3)=\int_{1.5}^{3} \frac{x+1}{8} d x=\frac{x^{2}}{16}+\left.\frac{x}{8}\right|_{1.5} ^{3}=\left(\frac{9}{16}+\frac{3}{8}\right)-\left(\frac{2.25}{16}+\frac{1.5}{8}\right)=0.609375 .
$$

15. Determine the appropriate value for k so that the following function is a valid probability density

$$
f(x)=\left\{\begin{array}{cl}
\frac{k}{\sqrt{x}} & \text { for } x \in(0,4] \\
0 & \text { otherwise }
\end{array}\right.
$$

Solution. We need

$$
1=\int_{-\infty}^{\infty} f(x) d x=\int_{0}^{4} \frac{k}{\sqrt{x}} d x=\left.2 k \sqrt{x}\right|_{0} ^{4}=4 k
$$

which implies $k=\frac{1}{4}$.
16. The probability density for a continuous random variable X is given below. Find $P\left(X>\frac{1}{2}\right)$.

$$
f(x)=\left\{\begin{array}{cl}
6 x(1-x) & \text { for } x \in(0,1) \\
0 & \text { otherwise }
\end{array}\right.
$$

Solution.

$$
P\left(X>\frac{1}{2}\right)=\int_{\frac{1}{2}}^{\infty} f(x) d x=\int_{\frac{1}{2}}^{1} 6 x(1-x) d x=3 x^{2}-\left.2 x^{3}\right|_{\frac{1}{2}} ^{1}=(3-2)-\left(\frac{3}{4}-\frac{2}{8}\right)=0.5
$$

17. The probability density for a continuous random variable X is given below. Find $P(-0.5<X \leq 0.25)$.

$$
f(x)=\left\{\begin{array}{cl}
x+1 & \text { for } x \in[-1,0) \\
1-x & \text { for } x \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

Solution.

$$
\begin{aligned}
P(-0.5<X \leq 0.25) & =\int_{-0.5}^{0.25} f(x) d x \\
& =\int_{-0.5}^{0} x+1 d x+\int_{0}^{0.25} 1-x d x \\
& =\left[\frac{x^{2}}{2}+x\right]_{-0.5}^{0}+\left[x-\frac{x^{2}}{2}\right]_{0}^{0.25} \\
& =\left(-\frac{1}{8}+\frac{1}{2}\right)+\left(\frac{1}{4}-\frac{1}{32}\right) \\
& =\frac{19}{32}
\end{aligned}
$$

18. Let X be a continuous random variable with probability density given by

$$
f(x)= \begin{cases}\frac{1}{2} x & \text { for } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Find the cumulative distribution function for X.

Fill in blank:

$$
\begin{aligned}
& F(x)=\ldots \quad \text { for } x<0 \\
& F(x)=\ldots \quad \text { for } 0 \leq x \leq 2 \\
& F(x)=\ldots \quad \text { for } x>2
\end{aligned}
$$

Solution. By definition,

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t
$$

For $x<0$:

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{x} 0 d t=0
$$

For $0 \leq x \leq 2$:

$$
F(x)=\int_{-\infty}^{x} f(t) d t=\int_{-\infty}^{0} f(t) d t+\int_{0}^{x} f(t) d t=\int_{-\infty}^{0} 0 d+\int_{0}^{x} \frac{1}{2} t d t=0+\left.\frac{1}{4} t^{2}\right|_{0} ^{x}=\frac{1}{4} x^{2}
$$

For $x>2$:

$$
\begin{aligned}
F(x) & =\int_{-\infty}^{x} f(t) d t \\
& =\int_{-\infty}^{0} f(t) d t+\int_{0}^{2} f(t) d t+\int_{2}^{\infty} f(t) d t \\
& =\int_{-\infty}^{0} 0 d+\int_{0}^{2} \frac{1}{2} t d t+\int_{2}^{\infty} 0 d t \\
& =0+\left.\frac{1}{4} t^{2}\right|_{0} ^{2}+0 \\
& =1
\end{aligned}
$$

19. The cumulative distribution function for a continuous random variable X is given below. Find $P\left(\frac{1}{4} \leq\right.$ $X \leq 1$).

$$
F(x)=\left\{\begin{array}{cl}
0 & \text { for } x<0 \\
\sin (\pi x) & \text { for } 0 \leq x \leq \frac{1}{2} \\
1 & \text { for } x>\frac{1}{2}
\end{array}\right.
$$

Solution.

$$
P\left(\frac{1}{4} \leq X \leq 1\right)=F(1)-F\left(\frac{1}{4}\right)=1-\sin \left(\frac{\pi}{4}\right)=1-\frac{\sqrt{2}}{2}=\frac{2-\sqrt{2}}{2} \approx 0.2929
$$

20. The cumulative distribution function for a continuous random variable X is given below. Find its probability density function $f(x)$ for $0 \leq x \leq 1$.

$$
F(x)=\left\{\begin{array}{cl}
0 & \text { for } x<0 \\
x^{5} & \text { for } 0 \leq x \leq 1 \\
1 & \text { for } x>1
\end{array}\right.
$$

Solution. For $0 \leq x \leq 1$,

$$
f(x)=\frac{d}{d x} F(x)=\frac{d}{d x} x^{5}=5 x^{4} .
$$

21. The number of years that a certain model of car will remain on the road (i.e. before it is scrapped), given that it has been on the road for 5 years, is a continuous random variable X with cumulative distribution given by

$$
F(x)=\left\{\begin{array}{cc}
0 & \text { for } x \leq 5 \\
1-\frac{25}{x^{2}} & \text { for } x>5
\end{array}\right.
$$

What is the probability that such a car will last longer than 10 years?
Solution.

$$
P(X>10)=1-P(X \leq 10)=1-F(10)=1-\left(1-\frac{25}{100}\right)=\frac{1}{4}
$$

