1. Let X be a continuous random variable with probability density function

$$
f(x)= \begin{cases}\frac{1}{10}\left(3 x^{2}+1\right) & \text { for } 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Verify that $f(x)$ is a valid probability density function
(b) Find $P(X \geq 1)$
2. Let Y be a continuous random variable. Let $f(x)=k(1+x)$ for $x \in[0,2]$ and $f(x)=0$ elsewhere. For which values of k is f a valid probability density function for Y ?
3. Which of the following are allowable as probability density functions for some continuous random variable? (show why or why not)
(a)

$$
f(x)=\left\{\begin{array}{cl}
4 x^{3} & \text { for } 0 \leq x \leq 1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(b)

$$
g(x)=\left\{\begin{array}{cl}
6 x^{2}-2 x & \text { for } 0 \leq x \leq 1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(c)

$$
h(x)=\left\{\begin{array}{cl}
\frac{1}{6}(1+x)^{5} & \text { for } 0 \leq x \leq 1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(d)

$$
p(x)=\left\{\begin{array}{cl}
\frac{3}{4}\left(1-x^{2}\right) & \text { for }-1<x<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

4. Find the cumulative distribution function $F(x)$ for the random variable X in question ??, and use $F(x)$ to compute $P(-1 \leq X \leq 1)$ and $P(0.5 \leq X \leq 1.5)$.
5. Find a probability density function for the random variable whose cumulative distribution function is given by

$$
F(x)=\left\{\begin{array}{cc}
0 & \text { for } x \leq 0 \\
x & \text { for } 0<x<1 \\
1 & \text { for } x \geq 1
\end{array} .\right.
$$

6. The probability density function of a random variable X is given by

$$
f(x)=\left\{\begin{array}{cc}
\frac{c}{\sqrt{x}} & \text { for } 0<x<4 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find the value of c, and compute $P\left(X<\frac{1}{4}\right)$ and $P(X>1)$.
7. Suppose discrete random variable X has range $\{0,1,2\}$ with probability distribution

$$
f(x)=\frac{\binom{2}{x}\binom{4}{3-x}}{\binom{6}{3}}
$$

(a) Verify that this is a valid probability distribution.
(b) Create a histogram for this probability distribution.
(c) Give the cumulative probability distribution for X.
(d) Come up with an example of a probability experiment which corresponds to this X.
8. Suppose the probability density of continuous random variable X is given by

$$
f(x)=\left\{\begin{array}{cl}
4 x^{3} & \text { for } 0 \leq x \leq 1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Find the cumulative distribution function $F(x)$ for X, and use it to compute $P(0.5<X<1)$.
9. Suppose the probability density of continuous random variable X is given by

$$
f(x)= \begin{cases}\frac{x}{2} & \text { for } 0<x \leq 1 \\ \frac{1}{2} & \text { for } 1<x \leq 2 \\ \frac{3-x}{2} & \text { for } 2<x<3 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Find the cumulative distribution function $F(x)$ for X.
(b) Use the cumulative distribution to compute the following probabilities

- $P(0.25<x<0.5)$
- $P(0.5<x<1.5)$
- $P(0.5<x<2.25)$

10. The continuous random variable X has cumulative distribution function given by

$$
F(x)=\left\{\begin{array}{cl}
0 & \text { for } x \leq-1 \\
\frac{x+1}{2} & \text { for }-1 \leq x<1 \\
1 & \text { for } x \geq 1
\end{array}\right.
$$

(a) Compute the following probabilities

- $P\left(-\frac{1}{2}<X<\frac{1}{2}\right)$
- $P(2<X<3)$
(b) Determine the probability density function for X.

11. Find the probability density function for continuous random variable Y with cumulative distribution function given by

$$
F(y)=\left\{\begin{array}{cl}
0 & \text { for } y \leq 0 \\
\frac{1}{4} y^{2} & \text { for } 0 \leq y \leq 2 \\
1 & \text { for } y>2
\end{array}\right.
$$

12. Can the following function serve as a valid probability density for a continuous random variable?

$$
f(x)=\left\{\begin{array}{cc}
\frac{2}{3}(x+1) & \text { for } x \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

13. Can the following function serve as a valid probability density for a continuous random variable?

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{4}(x+1) & \text { for } x \in[2,4] \\
0 & \text { otherwise }
\end{array}\right.
$$

14. Let X be a continuous random variable with probability density function given by

$$
f(x)=\left\{\begin{array}{cl}
\frac{x+1}{8} & \text { for } x \in(2,4) \\
0 & \text { otherwise }
\end{array}\right.
$$

Find $P(1.5<X<3)$.
15. Determine the appropriate value for k so that the following function is a valid probability density

$$
f(x)=\left\{\begin{array}{cl}
\frac{k}{\sqrt{x}} & \text { for } x \in(0,4] \\
0 & \text { otherwise }
\end{array}\right.
$$

16. The probability density for a continuous random variable X is given below. Find $P\left(X>\frac{1}{2}\right)$.

$$
f(x)=\left\{\begin{array}{cl}
6 x(1-x) & \text { for } x \in(0,1) \\
0 & \text { otherwise }
\end{array}\right.
$$

17. The probability density for a continuous random variable X is given below. Find $P(-0.5<X \leq 0.25)$.

$$
f(x)=\left\{\begin{array}{cl}
x+1 & \text { for } x \in[-1,0) \\
1-x & \text { for } x \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

18. Let X be a continuous random variable with probability density given by

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{2} x & \text { for } 0 \leq x \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the cumulative distribution function for X.

Fill in blank:

$$
\begin{aligned}
& F(x)=\ldots \quad \text { for } x<0 \\
& F(x)=\ldots \quad \text { for } 0 \leq x \leq 2 \\
& F(x)=\ldots \quad \text { for } x>2
\end{aligned}
$$

19. The cumulative distribution function for a continuous random variable X is given below. Find $P\left(\frac{1}{4} \leq\right.$ $X \leq 1)$.

$$
F(x)=\left\{\begin{array}{cl}
0 & \text { for } x<0 \\
\sin (\pi x) & \text { for } 0 \leq x \leq \frac{1}{2} \\
1 & \text { for } x>\frac{1}{2}
\end{array}\right.
$$

20. The cumulative distribution function for a continuous random variable X is given below. Find its probability density function $f(x)$ for $0 \leq x \leq 1$.

$$
F(x)=\left\{\begin{array}{cl}
0 & \text { for } x<0 \\
x^{5} & \text { for } 0 \leq x \leq 1 \\
1 & \text { for } x>1
\end{array}\right.
$$

21. The number of years that a certain model of car will remain on the road (i.e. before it is scrapped), given that it has been on the road for 5 years, is a continuous random variable X with cumulative distribution given by

$$
F(x)=\left\{\begin{array}{cc}
0 & \text { for } x \leq 5 \\
1-\frac{25}{x^{2}} & \text { for } x>5
\end{array}\right.
$$

What is the probability that such a car will last longer than 10 years?

