MATH1550, Winter 2023:
Exercise Set 4

1. Suppose a coin is weighted so that the probability of getting heads on any flip is twice the probability of getting tails. The coin is tossed 3 times. Let X be the random variable which assigns total number of heads to an outcome.
(a) Give the range of X and find $P(X=x)$ for each x in the range of X.
(b) Find the cumulative distribution for X.
(c) Draw a probability histogram for X.

Solution. (a) The range of X is the set $\{0,1,2,3\}$.

$$
\begin{aligned}
& P(X=0)=P(T T T)=\frac{1}{27}, \\
& P(X=1)=P(\{H T T, T H T, T T H\})=P(H T T)+P(T H T)+P(T T H)=\frac{6}{27} \\
& P(X=2)=P(\{H H T, H T H, T H H\})=P(H H T)+P(H T H)+P(T H H)=\frac{12}{27} \\
& P(X=3)=P(H H H)=\frac{8}{27}
\end{aligned}
$$

(b)

$$
F(x)=\left\{\begin{array}{cl}
0 & \text { for } x<0 \\
\frac{1}{27} & \text { for } 0 \leq x<1 \\
\frac{7}{27} & \text { for } 1 \leq x<2 \\
\frac{19}{27} & \text { for } 2 \leq x<3 \\
1 & \text { for } x \geq 3
\end{array}\right.
$$

(c)

2. Which of the following functions can be used as a valid probability distribution function?

$$
\begin{gathered}
A: \quad f(x)=\frac{x-2}{5} \quad \text { for } x=1,2,3,4,5 \\
B: \quad f(x)=\frac{x^{2}}{30} \quad \text { for } x=1,2,3,4 \\
C: \quad f(x)=\frac{x^{2}}{30} \quad \text { for } x=0,1,2,3,4 \\
D: \quad f(x)=\frac{1}{5} \quad \text { for } x=0,1,2,3,4,5 \\
E: \quad f(x)=\frac{x}{15} \quad \text { for } x=1,2,3,4,5 \\
F: \quad f(x)=\frac{\binom{5}{x}}{32} \quad \text { for } x=0,1,2,3,4,5
\end{gathered}
$$

Solution. The functions in B, C, E and F are valid; to see the check that $f(x) \geq 0$ for all x and $\sum_{x} f(x)=1$.
3. Determine an appropriate value for k so that

$$
f(x)=\frac{k}{x} \quad \text { for } x=1,2,3,4,5
$$

is a valid probability distribution. (Assume $f(x)=0$ for all other values of x.)
Solution. First note that whatever k we find must be positive. We require that

$$
1=\sum_{x=1}^{5} \frac{k}{x}=k \sum_{x=1}^{5} \frac{1}{x}=k\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)=k\left(\frac{137}{60}\right)
$$

which implies

$$
k=\frac{60}{137}
$$

4. A fair 4-sided die (with sides numbered $1,2,3,4$) and a fair 8 -sided die (with sides numbered $1,2,3,4,5,6,7,8$) are rolled. Outcomes of the individual dice are independent. Let Y be the random variable that gives the sum of the two dice. Give the range and probability distribution of Y.

Solution. The sample space of this experiment is $\left\{\left(d_{1}, d_{2}\right) \mid d_{1} \in\{1,2,3,4\}, d_{2}=\{1,2,3,4,5,6,7,8\}\right\}$ with $4 \cdot 8=32$ equally likely outcomes.

The range of Y is the set $\{2,3,4,5,6,7,8,9,10,11,12\}$.

The probability distribution for Y is summarized below:

y	Outcomes	$P(Y=y)$
2	$(1,1)$	$\frac{1}{32}$
3	$(1,2),(2,1)$	$\frac{2}{32}$
4	$(1,3),(2,2),(3,1)$	$\frac{3}{32}$
5	$(1,4),(2,3),(3,2),(4,1)$	$\frac{4}{32}$
6	$(1,5),(2,4),(3,3),(4,2)$	$\frac{4}{32}$
7	$(1,6),(2,5),(3,4),(4,3)$	$\frac{4}{32}$
8	$(1,7),(2,6),(3,5),(4,4)$	$\frac{4}{32}$
9	$(1,8),(2,7),(3,6),(4,5)$	$\frac{4}{32}$
10	$(2,8),(3,7),(4,6)$	$\frac{3}{32}$
11	$(3,8),(4,7)$	$\frac{2}{32}$
12	$(4,8)$	$\frac{1}{32}$

5. Three (regular) dice are thrown and the $6^{3}=216$ possible outcomes are equally likely. Let X be the random variable whose value is the sum of the three dice. What is the range of X ?

Solution. The range of X (all possible values for the sum of three dice) is:

$$
\{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18\}
$$

6. The cumulative distribution for discrete random variable X is

$$
F(x)= \begin{cases}0 & \text { for } x<1 \\ \frac{1}{3} & \text { for } x \in[1,4) \\ \frac{1}{2} & \text { for } x \in[4,6) \\ \frac{5}{6} & \text { for } x \in[6,10) \\ 1 & \text { for } x \geq 10\end{cases}
$$

(a) Find $P(X=4)$.
(b) Find $P(2<X \leq 6)$.

Solution. (a)

$$
P(X=4)=F(4)-F(1)=\frac{1}{2}-\frac{1}{3}=\frac{1}{6} .
$$

(b)

$$
P(2<X \leq 6)=P(X \leq 6)-P(X \leq 2)=F(6)-F(2)=\frac{5}{6}-\frac{1}{3}=\frac{1}{2}
$$

7. Suppose the cumulative distribution for a random variable X is given by

$$
F(x)= \begin{cases}0 & x<0 \\ \frac{1}{4} & 0 \leq x<1 \\ \frac{5}{8} & 1 \leq x<2 \\ \frac{11}{12} & 2 \leq x<3 \\ 1 & x \geq 3\end{cases}
$$

(a) Give the probability distribution for X.
(b) Use $F(x)$ to find $P\left(\frac{1}{2}<X<\frac{5}{2}\right)$.
(c) Draw a probability histogram for X.

Solution. (a)

x	$P(X=x)$
0	$\frac{1}{4}$
1	$\frac{3}{8}$
2	$\frac{7}{24}$
3	$\frac{1}{12}$

(b) Using the cumulative distribution $F(x)$ for X we have

$$
P\left(\frac{1}{2}<X<\frac{5}{2}\right)=F\left(\frac{5}{2}\right)-F\left(\frac{1}{2}\right)=\frac{11}{12}-\frac{1}{4}=\frac{2}{3} .
$$

(c)

8. A fair 4 -sided die (with sides numbered $1,2,3,4$) and a fair 6 -sided die (with sides numbered $1,2,3,4,5,6$) are rolled. Outcomes of the individual dice are independent. Let Y be the random variable that gives the sum of the two dice.
(a) What is range of Y ?
(b) Give the probability distribution for Y (you don't need a formula).
(c) Give the cumulative distribution function for Y.

Solution. (a) The range of Y is $\{2,3,4,5,6,7,8,9,10\}$.
(b)

$$
\begin{gathered}
P(Y=2)=\frac{1}{24}, \quad P(Y=3)=\frac{2}{24}, \quad P(Y=4)=\frac{3}{24}, \quad P(Y=5)=\frac{4}{24}, \quad P(Y=6)=\frac{4}{24}, \\
P(Y=7)=\frac{4}{24}, \quad P(Y=8)=\frac{3}{24}, \quad P(Y=9)=\frac{2}{24}, \quad P(Y=10)=\frac{1}{24}
\end{gathered}
$$

(c)

$$
F(y)=\left\{\begin{array}{cl}
0 & \text { for } y<2 \\
\frac{1}{24} & \text { for } 2 \leq y<3 \\
\frac{3}{24} & \text { for } 3 \leq y<4 \\
\frac{6}{24} & \text { for } 4 \leq y<5 \\
\frac{10}{24} & \text { for } 5 \leq y<6 \\
\frac{14}{24} & \text { for } 6 \leq y<7 \\
\frac{18}{24} & \text { for } 7 \leq y<8 \\
\frac{21}{24} & \text { for } 8 \leq y<9 \\
\frac{23}{24} & \text { for } 9 \leq y<10 \\
1 & \text { for } y \geq 10
\end{array}\right.
$$

9. Two balls are chosen randomly without replacement from an urn containing 8 white, 4 black, and 2 orange balls. Suppose that we win $\$ 2$ for each black ball selected and we lose $\$ 1$ for each white ball selected. Let X denote our winnings.
(a) What is the range of X ?
(b) Find the probability distribution of X.
(c) Find the cumulative distribution of X.

Solution. (a) The Range of X is $\{4,2,1,0,-1,-2\}$
(b) The probability distribution for X is

$$
\begin{gathered}
P(X=4)=\frac{\binom{4}{2}}{\binom{14}{2}}=\frac{6}{91} \\
P(X=2)=\frac{\binom{4}{1}\binom{2}{1}}{\binom{14}{2}}=\frac{8}{91} \\
P(X=1)=\frac{\binom{4}{1}\binom{8}{1}}{\binom{14}{2}}=\frac{32}{91} \\
P(X=0)=\frac{\binom{2}{2}}{\binom{14}{2}}=\frac{1}{91} \\
P(X=-1)=\frac{\binom{8}{1}\binom{2}{1}}{\binom{14}{2}}=\frac{16}{91} \\
P(X=-2)=\frac{\binom{8}{2}}{\binom{14}{2}}=\frac{28}{91}
\end{gathered}
$$

(c) The cumulative distribution of X is

$$
F(x)= \begin{cases}0 & \text { for } x<-2 \\ \frac{28}{91} & \text { for }-2 \leq x<-1 \\ \frac{44}{91} & \text { for }-1 \leq x<0 \\ \frac{45}{91} & \text { for } 0 \leq x<1 \\ \frac{77}{91} & \text { for } 1 \leq x<2 \\ \frac{85}{91} & \text { for } 2 \leq x<4 \\ 1 & \text { for } x \geq 4\end{cases}
$$

10. Suppose discrete random variable X has range $\{0,1,2\}$ with probability distribution

$$
f(x)=\frac{\binom{2}{x}\binom{4}{3-x}}{\binom{6}{3}}
$$

(a) Verify that this is a valid probability distribution.
(b) Create a histogram for this probability distribution.
(c) Give the cumulative probability distribution for X.
(d) Come up with an example of a probability experiment which corresponds to this X.

Solution. (a) We can see that $f(x) \geq 0$ for all $x \in\{0,1,2\}$ since the expression for $f(x)$ involves only binomial coefficients, which are always positive. Next we note that

$$
\sum_{x} f(x)=f(0)+f(1)+f(2)=\frac{\binom{2}{0}\binom{4}{3}}{\binom{6}{3}}+\frac{\binom{2}{1}\binom{4}{2}}{\binom{6}{3}}+\frac{\binom{2}{2}\binom{4}{1}}{\binom{6}{3}}=\frac{4}{20}+\frac{12}{20}+\frac{4}{20}=1
$$

(b)

(c)

$$
F(x)= \begin{cases}0 & \text { for } x<0 \\ \frac{1}{5} & \text { for } 0 \leq x<1 \\ \frac{4}{5} & \text { for } 1 \leq x<2 \\ 1 & \text { for } x \geq 2\end{cases}
$$

(d) Consider the experiment of drawing 3 balls without replacement from a bag containing 2 gold balls and 4 silver balls. Let X be the random variable whose value is the number of gold balls drawn.
11. Suppose you have 5 cards which are numbered 1 to 5 . You draw 2 of them at random without replacement. Let random variable X be the smallest number out the two cards you have drawn. Find $P(X=2)$.

Solution. There are $\binom{5}{2}=10$ different 2 -card hands that can be made (not counting order). Of those 10 hands, there are 3 for which the smallest number is 2 , namely $(2,3),(2,4)$ and $(2,5)$, so

$$
P(X=2)=\frac{3}{10}
$$

12. In a certain dice rolling game, the player rolls two fair six-sided dice and wins $\$ 3$ if the sum of the dice is a multiple of $3, \$ 5$ if the sum of dice is a multiple of 5 and $\$ 7$ if the sum of the dice is a multiple of 7. Let random variable Y denote the amount of money won on a single roll of both dice. Then Y has range $\{0,3,5,7\}$. Find the probability distribution for Y.

Fill in the blanks:

$$
P(Y=0)=_P(Y=3)=_\quad P(Y=5)=_\quad P(Y=7)=
$$

Solution. Recall that the probability distribution for X, the sum of the dice is given by $f(x)=\frac{6-|7-x|}{36}$ for $x=2,3, \ldots, 12$. Then $Y=3$ when $X=3,6,9$, or $12, Y=5$ when $X=5$, or $10, Y=7$ for $X=7$, and $Y=0$ for all other values of X. Thus

$$
\begin{gathered}
P(Y=3)=P(X=3)+P(X=6)+P(X=9)+P(X=12)=\frac{2}{36}+\frac{5}{36}+\frac{4}{36}+\frac{1}{36}=\frac{12}{36} \\
P(Y=5)=P(X=5)+P(X=10)=\frac{4}{36}+\frac{3}{36}=\frac{7}{36} \\
P(Y=7)=P(X=7)=\frac{6}{36} \\
P(Y=0)=1-P(Y=3)-P(Y=5)-P(Y=7)=1-\frac{25}{36}=\frac{11}{36}
\end{gathered}
$$

