1. Suppose a coin is weighted so that the probability of getting heads on any flip is twice the probability of getting tails. The coin is tossed 3 times. Let $X$ be the random variable which assigns total number of heads to an outcome.
(a) Give the range of $X$ and find $P(X=x)$ for each $x$ in the range of $X$.
(b) Find the cumulative distribution for $X$.
(c) Draw a probability histogram for $X$.
2. Which of the following functions can be used as a valid probability distribution function?

$$
\begin{gathered}
A: \quad f(x)=\frac{x-2}{5} \quad \text { for } x=1,2,3,4,5 \\
B: \quad f(x)=\frac{x^{2}}{30} \quad \text { for } x=1,2,3,4 \\
C: \quad f(x)=\frac{x^{2}}{30} \quad \text { for } x=0,1,2,3,4 \\
D: \quad f(x)=\frac{1}{5} \quad \text { for } x=0,1,2,3,4,5 \\
E: \quad f(x)=\frac{x}{15} \quad \text { for } x=1,2,3,4,5 \\
F: \quad f(x)=\frac{\binom{5}{x}}{32} \quad \text { for } x=0,1,2,3,4,5
\end{gathered}
$$

3. Determine an appropriate value for $k$ so that

$$
f(x)=\frac{k}{x} \quad \text { for } x=1,2,3,4,5
$$

is a valid probability distribution. (Assume $f(x)=0$ for all other values of $x$.)
4. A fair 4 -sided die (with sides numbered $1,2,3,4$ ) and a fair 8 -sided die (with sides numbered $1,2,3,4,5,6,7,8$ ) are rolled. Outcomes of the individual dice are independent. Let $Y$ be the random variable that gives the sum of the two dice. Give the range and probability distribution of $Y$.
5. Three (regular) dice are thrown and the $6^{3}=216$ possible outcomes are equally likely. Let $X$ be the random variable whose value is the sum of the three dice. What is the range of $X$ ?
6. The cumulative distribution for discrete random variable $X$ is

$$
F(x)=\left\{\begin{array}{cl}
0 & \text { for } x<1 \\
\frac{1}{3} & \text { for } x \in[1,4) \\
\frac{1}{2} & \text { for } x \in[4,6) \\
\frac{5}{6} & \text { for } x \in[6,10) \\
1 & \text { for } x \geq 10
\end{array}\right.
$$

(a) Find $P(X=4)$.
(b) Find $P(2<X \leq 6)$.
7. Suppose the cumulative distribution for a random variable $X$ is given by

$$
F(x)= \begin{cases}0 & x<0 \\ \frac{1}{4} & 0 \leq x<1 \\ \frac{5}{8} & 1 \leq x<2 \\ \frac{11}{12} & 2 \leq x<3 \\ 1 & x \geq 3\end{cases}
$$

(a) Give the probability distribution for $X$.
(b) Use $F(x)$ to find $P\left(\frac{1}{2}<X<\frac{5}{2}\right)$.
(c) Draw a probability histogram for $X$.
8. A fair 4 -sided die (with sides numbered $1,2,3,4$ ) and a fair 6 -sided die (with sides numbered $1,2,3,4,5,6$ ) are rolled. Outcomes of the individual dice are independent. Let $Y$ be the random variable that gives the sum of the two dice.
(a) What is range of $Y$ ?
(b) Give the probability distribution for $Y$ (you don't need a formula).
(c) Give the cumulative distribution function for $Y$.
9. Two balls are chosen randomly without replacement from an urn containing 8 white, 4 black, and 2 orange balls. Suppose that we win $\$ 2$ for each black ball selected and we lose $\$ 1$ for each white ball selected. Let $X$ denote our winnings.
(a) What is the range of $X$ ?
(b) Find the probability distribution of $X$.
(c) Find the cumulative distribution of $X$.
10. Suppose discrete random variable $X$ has range $\{0,1,2\}$ with probability distribution

$$
f(x)=\frac{\binom{2}{x}\binom{4}{3-x}}{\binom{6}{3}}
$$

(a) Verify that this is a valid probability distribution.
(b) Create a histogram for this probability distribution.
(c) Give the cumulative probability distribution for $X$.
(d) Come up with an example of a probability experiment which corresponds to this $X$.
11. Suppose you have 5 cards which are numbered 1 to 5 . You draw 2 of them at random without replacement. Let random variable $X$ be the smallest number out the two cards you have drawn. Find $P(X=2)$.
12. In a certain dice rolling game, the player rolls two fair six-sided dice and wins $\$ 3$ if the sum of the dice is a multiple of $3, \$ 5$ if the sum of dice is a multiple of 5 and $\$ 7$ if the sum of the dice is a multiple of 7. Let random variable $Y$ denote the amount of money won on a single roll of both dice. Then $Y$ has range $\{0,3,5,7\}$. Find the probability distribution for $Y$.

Fill in the blanks:

$$
P(Y=0)=\_\quad P(Y=3)=_{\_} \quad P(Y=5)=\_\quad P(Y=7)=
$$

