MATH1550, Winter 2023:
Exercise Set 10

1. Use properties of expected value to prove that $\operatorname{cov}(X, Y)$ (or $\sigma_{X Y}$) is given by

$$
\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y) .
$$

Solution.

$$
\begin{gathered}
\operatorname{cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
=E\left(X Y-\mu_{Y} X-\mu_{X} Y+\mu_{X} \mu_{Y}\right) \\
=E(X Y)-\mu_{Y} E(X)-\mu_{X} E(Y)+E\left(\mu_{X} \mu_{Y}\right) \\
=E(X Y)-\mu_{Y} \mu_{X}-\mu_{X} \mu_{Y}+\mu_{X} \mu_{Y} \\
=E(X Y)-\mu_{Y} \mu_{X}=E(X Y)-E(X) E(Y)
\end{gathered}
$$

2. Show, for the case of joint discrete random variables X and Y, that if X and Y are independent then

$$
E(X Y)=E(X) E(X) .
$$

(find an example in the notes/exercises where the converse is not true.)
Solution. Let the joint probability distribution for the random variables X and Y be $f(x, y)$; let $g(x)$ and $h(y)$ denote the marginal distributions of X and Y, respectively. Then,
$E(X Y)=\sum_{x} \sum_{y} x y \cdot f(x, y)$
$=\sum_{x} \sum_{y} x y \cdot(g(x) \cdot h(y)) \quad(f(x, y)=g(x) \cdot h(y)$ because X and Y are independent $)$
$=\sum_{x} x \cdot g(x) \cdot \sum_{y} y \cdot h(y)=E(X) E(Y)$.
See the Chapter 4 lecture notes (near the end) for an example where $E(X Y)=E(X) E(Y)$, but X and Y are not independent.
3. Let X and Y be discrete random variables with joint probability distribution given by the following table:

(a) Find the covariance of X and Y.
(b) Determine whether X and Y are independent (justify your answer).

Solution. (a)

$$
\begin{gathered}
\mu_{X}=E(X)=(-1) \cdot\left(0+\frac{1}{4}\right)+0 \cdot\left(\frac{1}{6}+0\right)+1 \cdot\left(\frac{1}{12}+\frac{1}{2}\right)=-\frac{1}{4}+0+\frac{7}{12}=\frac{4}{12}=\frac{1}{3} \\
\mu_{Y}=E(Y)=0 \cdot\left(0+\frac{1}{6}+\frac{1}{12}\right)+1 \cdot\left(\frac{1}{4}+0+\frac{1}{2}\right)=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}
\end{gathered}
$$

We also need to find $E(X Y)$.

$$
E(X Y)=(-1) \cdot 0 \cdot 0+(-1) \cdot 1 \cdot \frac{1}{4}+0 \cdot 0 \cdot \frac{1}{6}+0 \cdot 1 \cdot 0+1 \cdot 0 \cdot \frac{1}{12}+1 \cdot 1 \cdot \frac{1}{2}=0-\frac{1}{4}+0+0+0+\frac{1}{2}=\frac{1}{4}
$$

Now, we can evaluate the covariance using the formula $\sigma_{X Y}=E(X Y)-\mu_{X} \mu_{Y}$. We get, $\sigma_{X Y}=$ $\frac{1}{4}-\frac{1}{3} \cdot \frac{3}{4}=0$.
(b) X and Y are not independent because, for example $P(X=0)=\frac{1}{6}$ and $P(Y=0)=\frac{3}{12}$, but $P(X=0, Y=0)=\frac{1}{6} \neq \frac{1}{6} \cdot \frac{3}{12}$.
4. Let X and Y be jointly continuous random variables with joint probability density given by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{3}{5} x(y+x) & \text { for } 0<x<1,0<y<2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(a) Find μ_{X} and μ_{Y}.
(b) Find the covariance of X and Y. Are X and Y independent?

Solution. (a)

$$
\begin{aligned}
& \mu_{X}=E(X)= \int_{0}^{2} \int_{0}^{1} x \cdot\left(\frac{3}{5} x(y+x)\right) d x d y=\int_{0}^{2} \int_{0}^{1} \frac{3 x^{3}}{5}+\frac{3 x^{2} y}{5} d x d y \\
&=\int_{0}^{2} \frac{3 x^{4}}{20}+\left.\frac{x^{3} y}{5}\right|_{0} ^{1} d y=\int_{0}^{2} \frac{3}{20}+\frac{y}{5} d y=\frac{3 y}{20}+\left.\frac{y^{2}}{10}\right|_{0} ^{2}=\frac{7}{10} \\
&\left.\begin{array}{rl}
\mu_{Y}=E(Y)= & \int_{0}^{2} \int_{0}^{1} y \cdot\left(\frac{3}{5} x(y\right.
\end{array}\right) \\
&=\int_{0}^{2} \frac{x^{3} y}{5}+\left.\frac{3 x^{2} y^{2}}{10}\right|_{0} ^{1} d x=\int_{0}^{2} \frac{y}{5}+\frac{3 y^{2}}{10} d y=\frac{y^{2}}{10}+\left.\frac{y^{3}}{10}\right|_{0} ^{2}=\frac{6}{5}
\end{aligned}
$$

(b)

$$
\begin{aligned}
E(X Y)=\int_{0}^{2} \int_{0}^{1} x y \cdot\left(\frac{3}{5} x(y\right. & +x)) d x d y=\int_{0}^{2} \int_{0}^{1} \frac{3 x^{3} y}{5}+\frac{3 x^{2} y^{2}}{5} d x d y \\
& =\int_{0}^{2} \frac{3 x^{4} y}{20}+\left.\frac{x^{3} y^{2}}{5}\right|_{0} ^{1} d y=\int_{0}^{2} \frac{3 y}{20}+\frac{y^{2}}{5} d y=\frac{3 y^{2}}{40}+\left.\frac{y^{3}}{15}\right|_{0} ^{2}=\frac{5}{6}
\end{aligned}
$$

$$
\operatorname{cov}(X, Y)=E(X Y)-\mu_{X} \mu_{Y}=-\frac{1}{150}
$$

Since $\operatorname{cov}(X, Y) \neq 0$, it follows that X and Y are not independent.
5. Let X and Y be continuous random variables with joint probability density

$$
f(x, y)= \begin{cases}\frac{1}{8}(x+y) & \text { for } 0 \leq x \leq 2,0 \leq y \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the marginal distribution for X.
(b) Find the covariance for X and Y.

Solution. (a) For $0 \leq x \leq 2$ we have

$$
\begin{aligned}
g(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
& =\int_{0}^{2} \frac{1}{8}(x+y) d y \\
& =\frac{1}{8}\left(x y+\left.\frac{y^{2}}{2}\right|_{0} ^{2}\right) \\
& =\frac{x+1}{4}
\end{aligned}
$$

and $g(x)=0$ otherwise.
(b)

$$
\begin{aligned}
\mu_{X}=E(X) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot f(x, y) d x d y \\
& =\int_{0}^{2} \int_{0}^{2} x \cdot \frac{1}{8}(x+y) d x d y \\
& =\frac{1}{8} \int_{0}^{2}\left(\frac{x^{3}}{3}+\left.\frac{x^{2} y}{2}\right|_{0} ^{2}\right) d y \\
& =\frac{1}{8} \int_{0}^{2}\left(\frac{8}{3}+2 y\right) d y \\
& =\frac{1}{8}\left(\frac{8 y}{3}+\left.y^{2}\right|_{0} ^{2}\right) \\
& =\frac{7}{6}
\end{aligned}
$$

$$
\begin{aligned}
\mu_{Y}=E(Y)= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y \cdot f(x, y) d x d y \\
= & \int_{0}^{2} \int_{0}^{2} y \cdot \frac{1}{8}(x+y) d x d y \\
= & \frac{1}{8} \int_{0}^{2}\left(\frac{x^{2} y}{2}+\left.x y^{2}\right|_{0} ^{2}\right) d y \\
= & \frac{1}{8} \int_{0}^{2}\left(2 y+2 y^{2}\right) d y \\
& =\frac{1}{8}\left(y^{2}+\left.\frac{2 y^{3}}{3}\right|_{0} ^{2}\right) \\
& =\frac{7}{6} \\
E(X Y)= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y \cdot f(x, y) d x d y \\
= & \int_{0}^{2} \int_{0}^{2} x y \cdot \frac{1}{8}(x+y) d x d y \\
= & \frac{1}{8} \int_{0}^{2}\left(\frac{x^{3} y}{3}+\left.\frac{x^{2} y^{2}}{2}\right|_{0} ^{2}\right) d y \\
= & \frac{1}{8} \int_{0}^{2}\left(\frac{8 y}{3}+2 y^{2}\right) d y \\
= & \frac{1}{8}\left(\frac{4 y^{2}}{3}+\left.\frac{2 y^{3}}{3}\right|_{0} ^{2}\right) \\
= & \frac{4}{3}
\end{aligned}
$$

Therefore

$$
\operatorname{cov}(X, Y)=E(X Y)-\mu_{X} \mu_{Y}=\frac{4}{3}-\left(\frac{7}{6}\right)\left(\frac{7}{6}\right)=-\frac{1}{36} \approx-0.02778
$$

6. Let X and Y be continuous random variables with joint probability density

$$
f(x, y)= \begin{cases}2 x & \text { for } 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the marginal distribution for Y.
(b) Find the covariance for X and Y.

Solution. (a) The marginal distribution for Y is:

$$
\begin{aligned}
h(y) & =\int_{-\infty}^{\infty} f(x, y) d x \\
& =\int_{0}^{1} 2 x d x \\
& =\left.x^{2}\right|_{0} ^{1} \\
& =1
\end{aligned}
$$

(b) The mean of X is:

$$
\begin{aligned}
\mu_{X} & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d x d y \\
& =\int_{0}^{1} \int_{0}^{1} 2 x^{2} d x d y \\
& =\left.\int_{0}^{1} \frac{2 x^{3}}{3}\right|_{0} ^{1} d y \\
& =\int_{0}^{1} \frac{2}{3} d y \\
& =\left.\frac{2}{3} y\right|_{0} ^{1} \\
& =\frac{2}{3}
\end{aligned}
$$

The mean of Y is:

$$
\begin{aligned}
\mu_{Y} & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d x d y \\
& =\int_{0}^{1} \int_{0}^{1} 2 x y d x d y \\
& =\left.\int_{0}^{1} x^{2} y\right|_{0} ^{1} d y \\
& =\int_{0}^{1} y d y \\
& =\left.\frac{y^{2}}{2}\right|_{0} ^{1} \\
& =\frac{1}{2}
\end{aligned}
$$

The first product moment about the origin is:

$$
\begin{aligned}
E(X Y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f(x, y) d x d y \\
& =\int_{0}^{1} \int_{0}^{1} 2 x^{2} y d x d y \\
& =\left.\int_{0}^{1} \frac{2 x^{3} y}{3}\right|_{0} ^{1} d y \\
& =\int_{0}^{1} \frac{2 y}{3} d y \\
& =\left.\frac{y^{2}}{3}\right|_{0} ^{1} \\
& =\frac{1}{3}
\end{aligned}
$$

The covariance is:

$$
\sigma_{X Y}=E(X Y)-\mu_{X} \mu_{Y}=\frac{1}{3}-\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)=0
$$

7. The joint distribution, $f(x, y)$, for discrete random variables X and Y is given below. Find the covariance of X and Y.

Solution. We will start computing the column sums and row sums to determine the marginal distributions.

Then

$$
\begin{gathered}
\mu_{X}=\sum_{x=1}^{6} x g(x)=(1) \frac{1}{36}+(2) \frac{3}{36}+(3) \frac{5}{36}+(4) \frac{7}{36}+(5) \frac{9}{36}+(6) \frac{11}{36}=\frac{161}{36} \\
\mu_{Y}=\sum_{y=2}^{12} y h(y)=(2) \frac{1}{36}+(3) \frac{2}{36}+(4) \frac{3}{36}+(5) \frac{4}{36}+(6) \frac{5}{36}+(7) \frac{6}{36} \\
\\
\quad+(8) \frac{5}{36}+(9) \frac{4}{36}+(10) \frac{3}{36}+(11) \frac{2}{36}+(12) \frac{1}{36}=7 \\
E(X Y)= \\
\sum_{x=1}^{6} \sum_{y=2}^{12} x y f(x, y) \\
= \\
(2) \frac{1}{36}+(6) \frac{2}{36}+(8) \frac{1}{36}+(12) \frac{2}{36}+(15) \frac{2}{36}+(18) \frac{1}{36}+(20) \frac{2}{36}+(24) \frac{2}{36}+(28) \frac{2}{36} \\
\\
\quad+(32) \frac{1}{36}+(30) \frac{2}{36}+(35) \frac{2}{36}+(40) \frac{2}{36}+(45) \frac{2}{36}+(50) \frac{1}{36}+(42) \frac{2}{36}+(48) \frac{2}{36} \\
\\
\quad+(54) \frac{2}{36}+(60) \frac{2}{36}+(66) \frac{2}{36}+(72) \frac{1}{36} \\
=
\end{gathered} \frac{1232}{36} \quad \$
$$

So

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=\frac{1232}{36}-\left(\frac{161}{36}\right)(7)=\frac{35}{12}
$$

8. Let X and Y have joint density function given below. Find $E(X)$.

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x+y}{3} & \text { for } 0<x<2,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Solution.

$$
\begin{aligned}
E(X) & =\int_{0}^{1} \int_{0}^{2} x\left(\frac{x+y}{3}\right) d x d y \\
& =\int_{0}^{1} \frac{x^{3}}{9}+\left.\frac{x^{2} y}{6}\right|_{0} ^{2} d y \\
& =\int_{0}^{1} \frac{8}{9}+\frac{2 y}{3} d y \\
& =\frac{8 y}{9}+\left.\frac{y^{2}}{3}\right|_{0} ^{1} \\
& =\frac{11}{9}
\end{aligned}
$$

9. Let X and Y have joint density function given below. Given that $E(X)=\frac{5}{6}$ and $E(Y)=\frac{17}{6}$, find $\operatorname{Cov}(X, Y)$.

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{6-x-y}{8} & \text { for } 0<x<2,2<y<4 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Solution. We have

$$
\begin{aligned}
E(X Y) & =\int_{2}^{4} \int_{0}^{2} x y\left(\frac{6-x-y}{8}\right) d x d y \\
& =\int_{2}^{4} \frac{3 x^{2} y}{8}-\frac{x^{3} y}{24}-\left.\frac{x^{2} y^{2}}{16}\right|_{0} ^{2} d y \\
& =\int_{2}^{4} \frac{3 y}{2}-\frac{y}{3}-\frac{y^{2}}{4} d y \\
& =\frac{3 y^{2}}{4}-\frac{y^{2}}{6}-\left.\frac{y^{3}}{12}\right|_{2} ^{4} \\
& =\left(12-\frac{16}{6}-\frac{64}{12}\right)-\left(3-\frac{4}{6}-\frac{8}{12}\right) \\
& =\frac{7}{3}
\end{aligned}
$$

Thus

$$
\operatorname{Cov}(X, Y)=\frac{7}{3}-\left(\frac{5}{6}\right)\left(\frac{17}{6}\right)=-\frac{1}{36} .
$$

10. Let X and Y be joint continuous random variables with joint density

$$
f(x, y)= \begin{cases}\frac{2}{3}(x+2 y) & \text { for } 0<x<1,0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the conditional expected value of X given $Y=\frac{1}{2}$, i.e. find $E\left(X \left\lvert\, \frac{1}{2}\right.\right)$.

Solution.

$$
E\left(X \left\lvert\, Y=\frac{1}{2}\right.\right)=\int_{x} x \cdot f\left(x \left\lvert\, \frac{1}{2}\right.\right) d x=\int_{0}^{1} x \cdot f\left(x \left\lvert\, \frac{1}{2}\right.\right) d x
$$

where $f\left(x \left\lvert\, \frac{1}{2}\right.\right)=\frac{f\left(x, \frac{1}{2}\right)}{h\left(\frac{1}{2}\right)}$.

$$
h(y)=\int_{0}^{1} \frac{2}{3}(x+2 y) d x=\frac{1}{3}(1+4 y)
$$

Then,

$$
h\left(\frac{1}{2}\right)=\left.\frac{1}{3}(1+4 y)\right|_{y=\frac{1}{2}}=1
$$

and

$$
f\left(x \left\lvert\, \frac{1}{2}\right.\right)=\frac{f\left(x, \frac{1}{2}\right)}{1}=\frac{2}{3}\left(x+2 \cdot \frac{1}{2}\right)=\frac{2}{3}(x+1)
$$

for $0<x<1$, and 0 otherwise.
Then,

$$
E\left(X \left\lvert\, Y=\frac{1}{2}\right.\right)=\int_{0}^{1} x \cdot \frac{2}{3}(x+1) d x=\frac{2}{3} \int_{0}^{1} x^{2}+x d x=\left.\frac{2}{3}\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}\right)\right|_{0} ^{1}=\frac{2}{3} \cdot\left(\frac{1}{3}+\frac{1}{2}\right)=\frac{5}{9} .
$$

11. Let X be the amount a salesperson spends on gas in a day, and Y be the amount of money for which they are reimbursed. The joint density of X and Y is

$$
f(x, y)= \begin{cases}\frac{1}{25}\left(\frac{20-x}{x}\right) & \text { for } 10<x<20, \frac{x}{2}<y<x \\ 0 & \text { otherwise }\end{cases}
$$

(gives the probability (density) that they will be reimbursed y dollars after spending x dollars)

Find, $f(y \mid x)$, the conditional probability of Y given $X=x$ and use it to find the probability of being reimbursed at least $\$ 8$ given that $\$ 12$ was spent. What is the expected reimbursement given that $\$ 12$ was spent?

Solution. Let $g(x)$ be the marginal density for X. Then

$$
\begin{aligned}
g(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{\frac{x}{2}}^{x} \frac{1}{25}\left(\frac{20-x}{x}\right) & d y
\end{aligned}=\left.\frac{1}{25}\left(\frac{20-x}{x}\right) y\right|_{\frac{x}{2}} ^{x} .
$$

Then, for $10<x<20, \frac{x}{2}<y<x$

$$
f(y \mid x)=\frac{f(x, y)}{g(x)}=\frac{\frac{1}{25}\left(\frac{20-x}{x}\right)}{\left(\frac{20-x}{50}\right)}=\left(\frac{20-x}{25 x}\right)\left(\frac{50}{20-x}\right)=\frac{2}{x}
$$

and $f(y \mid x)=0$ otherwise.

Setting $x=12$ we have $f(y \mid 12)=\frac{1}{6}$ for $\frac{12}{2}<y<12$ and $f(y \mid 12)=0$ otherwise. Then

$$
P(Y \geq 8 \mid X=12)=\int_{8}^{12} \frac{1}{6} d y=\left.\frac{y}{6}\right|_{8} ^{12}=\frac{2}{3}
$$

The expected reimbursement given that x dollars were spent is

$$
E(Y \mid x)=\int_{-\infty}^{\infty} y \cdot f(y \mid x) d y
$$

In the case that $x=12$ we have

$$
E(Y \mid 12)=\int_{6}^{12} \frac{y}{6} d y=\left.\frac{y^{2}}{12}\right|_{6} ^{12}=9
$$

12. Let X and Y have joint density function given below. Find $E(Y \mid X=1)$. Hint, the marginal density for X is $g(x)=\frac{3-x}{4}$ for $0<x<2$ and is 0 elsewhere.

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{6-x-y}{8} & \text { for } 0<x<2,2<y<4 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Solution. The conditional density for Y given $X=x$ is

$$
f(y \mid x)=\frac{f(x, y)}{g(x)}=\frac{\frac{6-x-y}{8}}{\frac{3-x}{4}}=\frac{6-x-y}{3-x}
$$

for $0<x<2,2<y<4$ and is 0 elsewhere. Thus

$$
\begin{aligned}
E(Y \mid 1) & =\int_{2}^{4} y f(y \mid 1) d y \\
& =\int_{2}^{4} y\left(\frac{5-y}{2}\right) d y \\
& =\frac{5 y^{2}}{4}-\left.\frac{y^{3}}{6}\right|_{2} ^{4} \\
& =\left(20-\frac{64}{6}\right)-\left(5-\frac{8}{6}\right) \\
& =\frac{17}{3}
\end{aligned}
$$

