1. Use properties of expected value to prove that $\operatorname{cov}(X, Y)$ (or $\sigma_{X Y}$) is given by

$$
\operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

2. Show, for the case of joint discrete random variables X and Y, that if X and Y are independent then

$$
E(X Y)=E(X) E(X)
$$

(find an example in the notes/exercises where the converse is not true.)
3. Let X and Y be discrete random variables with joint probability distribution given by the following table:

(a) Find the covariance of X and Y.
(b) Determine whether X and Y are independent (justify your answer).
4. Let X and Y be jointly continuous random variables with joint probability density given by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{3}{5} x(y+x) & \text { for } 0<x<1,0<y<2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(a) Find μ_{X} and μ_{Y}.
(b) Find the covariance of X and Y. Are X and Y independent?
5. Let X and Y be continuous random variables with joint probability density

$$
f(x, y)= \begin{cases}\frac{1}{8}(x+y) & \text { for } 0 \leq x \leq 2,0 \leq y \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the marginal distribution for X.
(b) Find the covariance for X and Y.
6. Let X and Y be continuous random variables with joint probability density

$$
f(x, y)= \begin{cases}2 x & \text { for } 0 \leq x \leq 1,0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find the marginal distribution for Y.
(b) Find the covariance for X and Y.
7. The joint distribution, $f(x, y)$, for discrete random variables X and Y is given below. Find the covariance of X and Y.

8. Let X and Y have joint density function given below. Find $E(X)$.

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x+y}{3} & \text { for } 0<x<2,0<y<1 \\
0 & \text { elsewhere }
\end{array}\right.
$$

9. Let X and Y have joint density function given below. Given that $E(X)=\frac{5}{6}$ and $E(Y)=\frac{17}{6}$, find $\operatorname{Cov}(X, Y)$.

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{6-x-y}{8} & \text { for } 0<x<2,2<y<4 \\
0 & \text { elsewhere }
\end{array}\right.
$$

10. Let X and Y be joint continuous random variables with joint density

$$
f(x, y)= \begin{cases}\frac{2}{3}(x+2 y) & \text { for } 0<x<1,0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the conditional expected value of X given $Y=\frac{1}{2}$, i.e. find $E\left(X \left\lvert\, \frac{1}{2}\right.\right)$.
11. Let X be the amount a salesperson spends on gas in a day, and Y be the amount of money for which they are reimbursed. The joint density of X and Y is

$$
f(x, y)= \begin{cases}\frac{1}{25}\left(\frac{20-x}{x}\right) & \text { for } 10<x<20, \frac{x}{2}<y<x \\ 0 & \text { otherwise }\end{cases}
$$

(gives the probability (density) that they will be reimbursed y dollars after spending x dollars)

Find, $f(y \mid x)$, the conditional probability of Y given $X=x$ and use it to find the probability of being reimbursed at least $\$ 8$ given that $\$ 12$ was spent. What is the expected reimbursement given that $\$ 12$ was spent?
12. Let X and Y have joint density function given below. Find $E(Y \mid X=1)$. Hint, the marginal density for X is $g(x)=\frac{3-x}{4}$ for $0<x<2$ and is 0 elsewhere.

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{6-x-y}{8} & \text { for } 0<x<2,2<y<4 \\
0 & \text { elsewhere }
\end{array}\right.
$$

