Mathematics 1550H – Introduction to probability

TRENT UNIVERSITY, Winter 2018

Common Probability Distributions – The Short Form*

Discrete Distributions

1. Discrete Uniform. n equally likely outcomes for some $n \ge 1$.

Probability function: $m(\omega) = \frac{1}{n}$

Expected value and variance of a random variable X on Ω depend on just what values X assigns to each outcome $\omega \in \Omega$.

2. Bernoulli Trial. Two outcomes with probability of success p and of failure q = 1 - p. X counts successes.

Probability function: m(1) = P(success) = p and m(0) = P(failure) = q.

Expected value: $\mu = E(X) = p$ Variance: $\sigma^2 = V(X) = pq$

3. Binomial. n Bernoulli trials, with probability of success p and of failure q = 1 - p. X counts successes.

Probability function: $m(k) = P(k \text{ successes}) = \binom{n}{k} p^k q^{n-k}$, where $0 \le k \le n$. Expected value: $\mu = E(X) = np$ Variance: $\sigma^2 = V(X) = npq$

4. Geometric. Bernoulli trials repeated until the first success, with probability of success p and of failure q = 1 - p. X counts the number of trials required.

Probability function: $m(k) = P(\text{first success on } k\text{th trial}) = q^{k-1}p, \text{ where } k \ge 1.$ Expected value: $\mu = E(X) = \frac{1}{n}$ Variance: $\sigma^2 = V(X) = \frac{q}{n^2}$

5. Negative Binomial. Bernoulli trials repeated until the kth success, with probability of success p and of failure q = 1 - p. X counts the number of trials required.

Probability function: $m(x) = P(k \text{ success on } x \text{th trial}) = \binom{x-1}{k-1} p^k q^{x-k}$ Expected value: $\mu = E(X) = \frac{k}{p}$ Variance: $\sigma^2 = V(X) = \frac{kq}{n^2}$

Continuous Distributions

1. Continuous Uniform.

Density function: $f(t) = \begin{cases} \frac{1}{b-a} & a \le t \le b \\ 0 & \text{otherwise} \end{cases}$

Expected value: $\mu = E(X) = \frac{a+b}{2}$ Variance: $\sigma^2 = V(X) = \frac{(b-a)^2}{12}$

2. Exponential.

Density function: $f(t) = \begin{cases} \lambda e^{-\lambda t} & t \ge 0 \\ 0 & t < 0 \end{cases}$ Expected value: $\mu = E(X) = \frac{1}{\lambda}$ Variance: $\sigma^2 = V(X) = \frac{1}{\lambda^2}$

1

With apologies to the creators of Buckaroo Banzai. "Remember: No matter where you go, there you are."

3. Standard normal.

Standard normal.

Density function:
$$\varphi(t) = \frac{1}{\sqrt{2\pi}}e^{-t^2/2}$$

Expected value:
$$\mu = E(X) = 0$$
 Variance: $\sigma^2 = V(X) = 1$

4. Normal. . . . with mean
$$\mu$$
 and standard deviation σ .

Density function: $f(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(t-\mu)^2/2\sigma^2}$

Expected value: $E(X) = \mu$ Variance: $V(X) = \sigma^2$

Expected value:
$$E(X) = \mu$$
 Variance: $V(X) = \sigma^2$